# Adsorption isotherms of CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, Ar and H<sub>2</sub> on activated carbon and zeolite LiX up to 1.0 MPa

Yongha Park · Dong-Kyu Moon · Yo-Han Kim · Hyungwoong Ahn · Chang-Ha Lee

Received: 17 December 2013/Revised: 1 March 2014/Accepted: 3 March 2014/Published online: 22 March 2014 © Springer Science+Business Media New York 2014

**Abstract** The adsorption isotherms of CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, Ar, and H<sub>2</sub> on activated carbon and zeolite LiX were measured using a volumetric method. Equilibrium experiments were conducted at 293, 308, and 323 K and pressures up to 1.0 MPa. The adsorption isotherm and heat of adsorption were analyzed for two pressure regions of experimental data: pressures up to 0.1 MPa and up to 1.0 MPa. Each experimental isotherm was correlated by the Langmuir, Sips, Toth and temperature dependent Sips isotherm models, and the deviation of each model was evaluated. The Sips and Toth models showed smaller deviation from the experimental data of adsorbents than the Langmuir model. Isosteric heats of adsorption were calculated by the temperature dependent Sips model and are presented along with surface loading. From deviation analysis, it is recommended that the isotherm in the proper pressure range be used to appropriately design adsorptive processes.

**Keywords** Activated carbon · Zeolite LiX · Adsorption isotherm · Syngas · Reforming gas

## List of symbols

B Langmuir, Sips, and Toth isotherm parameter  $(kPa^{-1})$ 

DQ<sub>aver</sub> Adsorbed amount average deviation (%) i Isotherm data number (dimensionless)

Y. Park · D.-K. Moon · Y.-H. Kim · C.-H. Lee (☒)
Department of Chemical and Biomolecular Engineering, Yonsei
University, Seoul, Korea
e-mail: leech@yonsei.ac.kr

# H. Ahn

Scottish Carbon Capture and Storage Centre, Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK

- $K_1$  1st parameters in the temperature dependence Sips model (mol kg<sup>-1</sup>)
- $K_2$  2nd parameters in the temperature dependence Sips model (mol kg<sup>-1</sup> K<sup>-1</sup>)
- $K_3$  3rd parameters in the temperature dependence Sips model (kPa<sup>-1</sup>)
- K<sub>4</sub> 4th parameters in the temperature dependence Sips model (K)
- K<sub>5</sub> 5th parameters in the temperature dependence Sips model (dimensionless)
- K<sub>6</sub> 6th parameters in the temperature dependence Sips model (K)
- k Number of data (dimensionless)
- n Sips isotherm parameter (dimensionless)
- P Pressure (kPa)
- Q<sub>st</sub> Isosteric heat of adsorption, (kJ mol<sup>-1</sup>)
- q Adsorbed amount moles, (mol kg<sup>-1</sup>)
- $q_m$  Langmuir, Sips, and Toth isotherm parameter, (mol  $kg^{-1}$ )
- R Ideal gas constant  $(J \text{ mol}^{-1} \text{ K}^{-1})$
- T Temperature (K)
- t Toth isotherm parameter (dimensionless)

#### 1 Introduction

Global warming caused by greenhouse gas (GHG) emissions has become one of the most important global issues. In addition, the need for hydrogen has greatly increased in various industrial fields where it is used as a chemical raw material or a clean fuel source.

Recently, many adsorption processes have been developed to capture CO<sub>2</sub> from emission gases. Increasing demand for hydrogen has provided strong economic motivation for the development of adsorption processes to



produce high purity  $H_2$  from reforming gas, syngas, coke oven gas, and more traditional sources. Furthermore, the integrated gasification combined cycle (IGCC) generates massive amounts of hydrogen and carbon dioxide. The recovered  $H_2$  may be supplied to  $H_2$  turbines for green power generation as a next-generation IGCC process.

As a result, many kinds of adsorbents and adsorption technologies have been reported to resolve the issues of  $CO_2$  capture and/or  $H_2$  recovery from various effluent gases. The pressure swing adsorption (PSA) process is a promising process for such purpose from the gas streams (Chue et al. 1995; Gomes and Yee 2002; Yang and Lee 1998; Lee et al. 2008; Liu et al. 2011; You et al. 2012; Ahn et al. 2012; Schell et al. 2013).

In many studies, the capacity of newly developed adsorbents is compared with activated carbons and/or zeolites, which are widely applied in present industrial fields. Furthermore, since adsorption processes are based on preferential adsorption of desired gases onto a porous adsorbent at a certain pressure, adsorption equilibrium data of each component in a mixture are the most important factors in the design of adsorption processes. The effluent gases from power generators, coal gasifiers, coke combustors, reformers, and water—gas-shift reactors consist of a combination of CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, Ar and H<sub>2</sub> after undergoing various pretreatment processes such as particle removal, sour gas removal, sulfur removal/recovery, and/or drying.

To treat such effluent gases using adsorption processes, it is necessary to measure accurate single-component adsorption equilibrium data. In addition, since the adsorption processes can be operated at either low pressure or high pressure, adsorption isotherm data should be supplied in the proper pressure range to select appropriate adsorbents for design of efficient adsorption processes.

In this study, the adsorption isotherms of single components (CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, Ar and H<sub>2</sub>) on activated carbon and zeolite LiX are presented. Adsorption isotherm data were measured at three temperatures of 293, 308, and 323 K and pressures up to 1.0 MPa. The experimental data were correlated with the Langmuir, Sips, Toth and temperature dependent Sips isotherm models. Fitting parameters and deviations were evaluated in ranges of low pressure ( $\sim 0.1$  MPa) and high pressure ( $\sim 1.0$  MPa). These results can contribute to the design of various adsorption processes for H<sub>2</sub> recovery and CO<sub>2</sub> capture. In addition, they can be used for the evaluation of adsorption capacity for newly developed adsorbents.

## 2 Experimental section

## 2.1 Material

Cylindrical activated carbon and spherical zeolite LiX were supplied by KURARAY CHEMICAL Co. (Coal-derived

Table 1 Physical properties of activated carbon and zeolite LiX

| Property                                             | Activated carbon | Zeolite LiX       |
|------------------------------------------------------|------------------|-------------------|
| Туре                                                 | Cylindrical      | Pellet            |
| Particle size (mm)                                   | 1.7-2.36         | 1.5-1.7           |
| Particle porosity (g/cm <sup>3</sup> )               | 0.433            | 0.64              |
| Average pore diameter (nm)                           | 1.67             | 3.79 <sup>a</sup> |
| Pellet density (g/cm <sup>3</sup> )                  | 0.85             | 2.4               |
| Heat capacity (cal g <sup>-1</sup> K <sup>-1</sup> ) | 0.25             | 0.42              |
| Total surface area (m <sup>2</sup> g <sup>-1</sup> ) | 1,306.4          | 664.7             |
|                                                      |                  |                   |

<sup>&</sup>lt;sup>a</sup> Mesopore diameter of zeolite LiX pellet, not crystal pore size

activated carbon; 2GA-H2J) and ZEOCHEM Co. (Z10-05-03), respectively. Prior to each experimental run, activated carbon was regenerated at 393 K in a vacuum oven, and zeolite LiX was regenerated at 623 K in an oven for longer than eight hours. BET analysis of the adsorbents was conducted with an automatic volumetric sorption analyzer (Quantachrome, ASIQM0V000-4) using nitrogen adsorption at 77 K. The measured and supplied physical properties of the adsorbents are detailed in Table 1. Gases used as adsorbates were of high purity (> 99.99 %).

## 2.2 Apparatus

Adsorption equilibrium was measured using a high pressure volumetric system (BELSORP-HP). Before the experimental run, about 0.5 g of the adsorbent was placed into the adsorption cell. In the method, the total amount of gas admitted into the system and the amount of gas in the vapor phase remaining after adsorption equilibrium were determined by appropriate P–V–T measurement.

# 2.3 Experimental procedure

After regeneration in a vacuum oven, the mass of the adsorbent was determined by a microbalance with an accuracy of  $\pm 10~\mu g$ . Then, the samples were introduced into the adsorption cell after being purged by He twice. The measured adsorbents were put into the adsorption cell with a ceramic cap. To eliminate moisture and any trace of pollutants adsorbed during the installation of the adsorption cell, the activated carbon and zeolite LiX were reactivated at 393 and 623 K, respectively, under high vacuum for longer than 12 h. An oil diffusion pump and a mechanical vacuum pump maintained a vacuum on the system, and the evacuation was monitored with a pressure indicator.

The system, including gas storage tanks, lines, valves and gauges, was installed in an air bath, and the temperature of the internal system was kept constant by a temperature controller. Further, the temperature of the adsorption cell was controlled using a water bath circulator.



The temperature of the external connecting line between the system and adsorption cell was also controlled with an additional air bath temperature controller. The internal volume of the system and the dead volume in the adsorption system were determined by expansion of helium gas at the experimental temperature.

Before the experiment, the internal system was purged with helium gas and was evacuated with vacuum pumps. After purge/vacuum step three times, the desired amount of adsorptive gas was supplied to the internal system. During the experiment, all of the temperatures and pressures were recorded automatically on an interfaced computer. The amount of gas adsorbed was calculated from the measured temperature, pressure, and volume changes using compressibility factors obtained from NIST thermodynamic isotherm properties. (Linstrom and Mallard 2001)

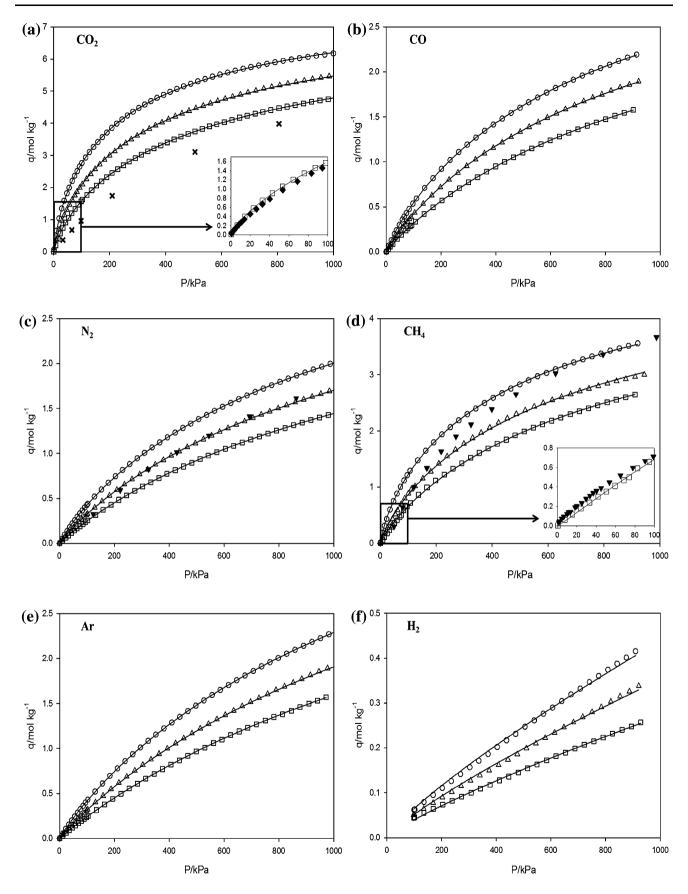
### 3 Results and discussion

## 3.1 Adsorption isotherm

Because the excess adsorbed amounts were measured in the volumetric method (Sircar 1999), the excess adsorption isotherms of  $CO_2$ , CO,  $N_2$ ,  $CH_4$ , Ar, and  $H_2$  on activated carbon and zeolite LiX at 293, 308 and 323 K and pressures up to 1.0 MPa are compared in Figs. 1 and 2, respectively. And the isotherms of up to 0.1 MPa are simultaneously provided in the extended form of figures to clearly present the comparison with reference results at a low pressure range.

In the case of CO<sub>2</sub> on the activated carbon, the experimental data were compared with the published result at 323 K, as shown in Fig. 1a (Himeno et al. 2005; Kuro-Oka et al. 1984). Furthermore, the experimental adsorption isotherms of N<sub>2</sub> (Fig. 1c) and CH<sub>4</sub> (Fig. 1d) on the activated carbon were compared with the previous study performed at 293 and 323 K (Choi et al. 2003; Kuro-Oka et al. 1984). In the full pressure range of Figs. 1a, c, d, the average difference in the adsorbed amount of CO<sub>2</sub>, N<sub>2</sub>, and CH<sub>4</sub> between the results of this study and the reference results were 23, 17, and 9 %, respectively. Compared with the references in the full pressure range, their surface area and particle density of 1,150 m<sup>2</sup> g<sup>-1</sup>, 0.51 g/cm<sup>3</sup> (Coal-derived BPL, Calgon) and 1,150–1,250 m<sup>2</sup> g<sup>-1</sup>, 0.44 g/cm<sup>3</sup> (PCB, Calgon) were smaller than those of the activated carbon in the study (Choi et al. 2003; Himeno et al. 2005). In the low pressure range of Figs. 1a, d, the CO<sub>2</sub> and CH<sub>4</sub> isotherm showed 0.15 and 0.42 % difference at 323 K, respectively. Although the reference data came from the activated carbon fiber with a high surface area (KF-1500, Toyabo Co., Ltd.), the shapes of CO<sub>2</sub> and CH<sub>4</sub> isotherms in the two studies were similar to each other. The adsorption capacity of CO<sub>2</sub> on the activated carbon used was higher than the previous result while the activated carbon showed more favorable isotherm for CH<sub>4</sub> than the activated carbon reported in the reference.

The experimental results of CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, and Ar on zeolite LiX were also compared with the results of previous studies at 293 K, as shown in Figs. 2a–e (Park et al. 2006, 2008; Baksh et al. 1992). The average deviations in the adsorbed amount of each gas on zeolite LiX were 17, 31, 30, 37, and 13 %, respectively. Zeolite LiX showed a more favorable isotherm for CO<sub>2</sub> than the previous result, but the saturated amount was slightly lower. On the contrary, the adsorption isotherms of CO, N<sub>2</sub>, CH<sub>4</sub> and Ar in the study were larger and more favorable than the previous results.


The surface area of zeolite LiX in the references was smaller by about  $130 \text{ m}^2 \text{ g}^{-1}$  than that in the study. And the level of alkali metal ion exchange in zeolite LiX crystal can be different by using the applied ion exchange method (Pillai et al. 2010; Walton et al. 2006). As shown in Fig. 2c for  $N_2$ , a large difference among the studies was observed. And the adsorption isotherms of zeolite LiX pellets were smaller than zeolite LiX powder (Baksh et al. 1992). Therefore, it is expected that the amount of binder needed to make a pellet and ion exchange level may lead to the difference in the adsorption capacity between zeolite LiX pellets.

Considering the different total surface areas and shapes of the adsorbent manufactured by different companies, the experimental results were reasonable. Furthermore, the experimental reproducibility of both adsorbents was confirmed within 4 % for  $\rm CO_2$  by experiments repeated in triplicate and as less than 3 % for  $\rm CO$ ,  $\rm CH_4$ ,  $\rm N_2$  and  $\rm Ar$  by experiments repeated in duplicate under the same conditions.

The isotherms of CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, and Ar isotherms on activated carbon and isotherms of CO<sub>2</sub>, CO, N<sub>2</sub>, and CH<sub>4</sub> isotherms on zeolite LiX up to 1.0 MPa showed convex curvature of Type I, as shown in Figs. 1a–e and 2a–d. However, the N<sub>2</sub> and Ar isotherms up to 0.1 MPa and H<sub>2</sub> isotherms up to 1.0 MPa on activated carbon were nearly linear. Isotherms of Ar and H<sub>2</sub> on zeolite LiX up to 1.0 MPa were also linear. The order of adsorption amount was  $CO_2 \gg CH_4 > CO > N_2 \ge Ar \gg H_2$  for activated carbon and  $CO_2 \gg CO > CH_4 \ge N_2 > Ar \gg H_2$  for zeolite LiX for isotherms in both the low pressure range ( $\sim 0.1$  MPa) and high pressure range ( $\sim 1.0$  MPa).

The adsorption amount of  $CO_2$  on activated carbon at high pressure was greater than that of zeolite LiX, while the result in the low pressure region was opposite due to the strong adsorption affinity of  $CO_2$  on zeolite LiX. The adsorption amount of CO on zeolite LiX was greater than that on activated carbon in both pressure ranges, showing







▼Fig. 1 Adsorption isotherms on activated carbon a CO<sub>2</sub>, b CO, c N<sub>2</sub>, d CH<sub>4</sub>, e Ar, and f H<sub>2</sub> (white circle, T = 293 K; white up pointing triangle, T = 308 K; white square, T = 323 K; black down pointing triangle, T = 293 K, Choi et al. 2003; times, T = 323 K, (Himeno et al. 2005); filled diamond, T = 323 K (Kuro-Oka et al. 1984); straight line, Sips model)

much stronger adsorption affinity in the low pressure range, as illustrated in Figs. 1b and 2b. Further, the adsorption amount of  $N_2$  on zeolite LiX was similar to that on activated carbon, but the adsorption affinity on zeolite LiX was much stronger than that on activated carbon, as shown at low pressure in Figs. 1c and 2c. On the other hand, the adsorption isotherms of  $CH_4$  and Ar on activated carbon were higher than those on zeolite LiX for all pressure ranges.

Although there are large differences in surface area between the two adsorbents listed in Table 1, the results of  $CO_2$ , CO and  $N_2$  on zeolite LiX were less affected by the surface area because the adsorption was more highly affected by the stronger attractive force between the adsorbate and adsorbent than between the molecules of the adsorbate in the bulk state. The effect of surface area on adsorption was clearly shown in  $H_2$  isotherms, which have almost negligible adsorption affinity. The adsorption isotherm of  $H_2$  on activated carbon at 293 K was almost twice as high as that on zeolite LiX, as shown in Figs. 1f and 2f, similar to the surface area difference ratio shown in Table 1.

## 3.2 Adsorption isotherm models

For each set of equilibrium data, rigorous assessments were performed and correlated using several pure-species equilibrium models. The isotherm equations used in this study were Langmuir, Toth, and Sips models (Do Duong 1998).

The Langmuir isotherm model is in general use for physical adsorption from gas or liquid solutions. This expression is based on a kinetic principle, that is, the rate of adsorption is equal to the rate of desorption from the surface:

$$q = \frac{q_m BP}{1 + BP}$$

where q is the number of adsorbed moles, P is equilibrium pressure, and  $q_{\rm m}$  and B are Langmuir isotherm parameters.

Recognizing the problem of the continuing increase in the adsorbed amount with an increase in pressure or concentration in the Freundlich isotherm model, Sips proposed an equation similar in form to the Freundlich isotherm model but with a finite limit when the pressure is sufficiently high. The mathematical form of the isotherm model is

$$q = \frac{q_m (BP)^{1/n}}{1 + (BP)^{1/n}}$$

where q<sub>m</sub>, B and n are isotherm parameters.

For a useful description of the adsorption equilibrium data at various temperatures, it is important to have the temperature dependent form of an isotherm model. The temperature dependence of Sips isotherm model for the affinity constant (B) may take the following form (Do Duong 1998).

$$B = K_3 \exp(K_4/T)$$

The temperature dependent form of the saturation capacity  $(q_m)$  and exponent (n) are empirical and the following form is chosen because of its simplicity.

$$q_m = K_1 + K_2 T$$

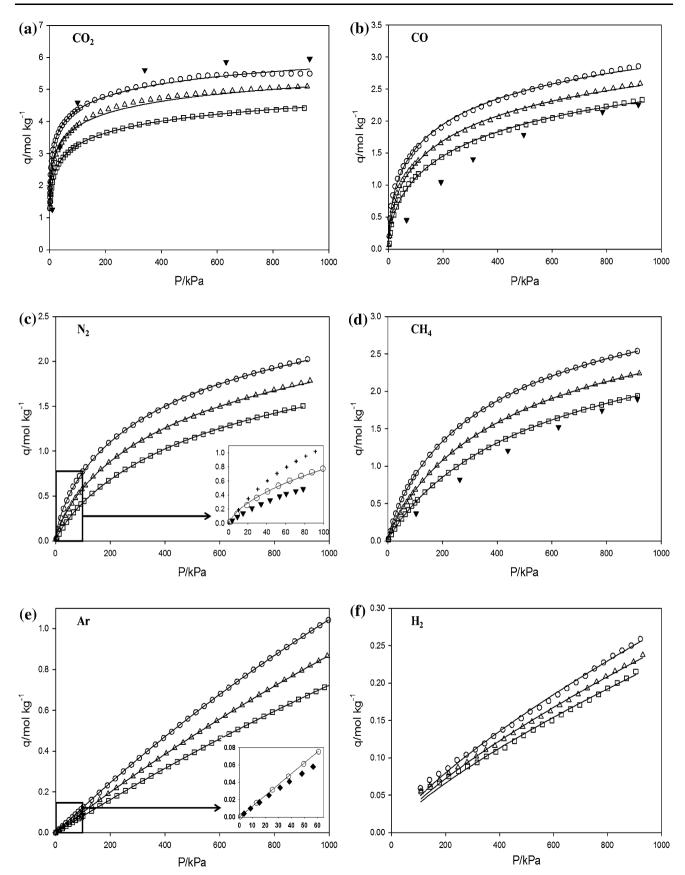
$$n = K_5 + K_6/T$$

The previous Sips isotherm model has limitations. Specifically, the Sips isotherm model is not valid at low pressure as it does not possess the correct low Henry-type behavior. The Toth isotherm model was introduced to address the above limitation. The Toth isotherm model is a semi-empirical expression that effectively describes many systems with sub-monolayer coverage. Because of its simplicity in form and its accurate behavior at low and high pressures, the Toth isotherm model is used in many applications for fitting data of many adsorbates on activated carbon as well as zeolites (Do Duong 1998; Myers and Belfort 1984; Lee et al. 2002). It is a three-parameter model usually written as:

$$q = \frac{q_m BP}{\left(1 + \left(BP\right)^t\right)^{1/t}}$$

where  $q_{\rm m}$ , B, and t are numerically determined isotherm parameters.

Experimental data were divided into two pressure ranges for comparison of the fitting parameters and deviations: 0 to 0.1 MPa and 0 to 1.0 MPa. The fitting of Langmuir, Sips, Toth, and temperature dependent Sips isotherm models to the experimental data was performed with MATLAB 7.4 (Mathworks, Inc.) using a nonlinear curvefitting procedure.


In this study, the experimental deviation from isotherm models was calculated using the following average percent deviation ( $DQ_{aver}$ ) equations:

$$DQ_{aver}/\% = \frac{100}{k} \sum_{j=1}^{k} \left| \frac{q_j^{\text{exp}} - q_j^{cal}}{q_j^{\text{exp}}} \right|$$

where q<sup>exp</sup> and q<sup>cal</sup> are the experimental and calculated moles adsorbed, respectively, and k is the number of data points at a given temperature.



Adsorption (2014) 20:631–647





◄ Fig. 2 Adsorption isotherms on zeolite LiX a CO<sub>2</sub>, b CO, c N<sub>2</sub>, d CH<sub>4</sub>, e Ar, and f H<sub>2</sub> (white circle, T = 293 K; white up pointing triangle, T = 308 K; white square, T = 323 K; black down pointing triangle, T = 293 K (Park et al. 2008); filled diamond, T = 293 K (Park et al. 2006); plus sign, T = 293 K (Baksh et al. 1992); straight line, Sips model)

The isotherm parameters for these models are given in Tables 2, 3, 4, 5 and 6, respectively. As shown in Figs. 1 and 2, the isotherm models accurately predicted the experimental data. The Sips and Toth models provided better fits than the Langmuir model.

The fitting deviation ( $DQ_{aver}$ ) at low pressure was lower than that at high pressure. Further, experimental equilibrium data with  $DQ_{aver}$  at high pressure ( $\sim 1.0$  MPa) and low pressure ( $\sim 0.1$  MPa) are presented in Tables 7, 8, 9, 10, 11 and 12 for activated carbon and Tables 13, 14, 15, 16, 17 and 18 for zeolite LiX. This result implies that the isotherm in the proper pressure range should be utilized to appropriately design adsorptive processes.

## 3.3 Isosteric heat of adsorption

Information related to heat release is important in an adsorption kinetic study and an adsorption bed dynamic study. The portion of heat adsorbed by the solid increases the particle temperature, and this increase in temperature

affects the adsorption kinetics.(Do Duong 1998; Ahn et al. 2002, 2004) The isosteric heat of adsorption,  $Q_{\rm st}$ , can be calculated from experimental isotherms at different temperatures, or it can be derived from any isotherm equation. And the heat of adsorption can be calculated by taking numerical derivatives from the isotherm model prediction at different temperatures (Talu and Kabel 1987). In this study, the isosteric heat of adsorption was calculated from the temperature dependence of the equilibrium capacity using the Clausius–Claypeyron equation (Do Duong 1998; Hill 1949; Nam et al. 2005; Suzuk 1990) along with the temperature dependent Sips isotherm model.

At two different temperatures with the same adsorbed amount or pressure, the isosteric heat of adsorption can be expressed directly. The data can be numerically integrated to determine the isosteric heat of adsorption by following the form of the Clausius–Claypeyron equation:

$$\frac{\Delta Q_{st}}{RT^2} = \left[\frac{\partial \ln P}{\partial T}\right]_a$$

$$\frac{\Delta Q_{st}}{RT^2}dT = d \ln P$$

$$\Delta Q_{st} = R \frac{\ln P_1 / P_2}{(1/T_1) - (1/T_2)}$$

Table 2 Parameters of Langmuir model at pressure up to 0.1 MPa and 1.0 MPa

| Gas    | T (k) | Activated carl                  | bon                       |                                 |                                        | Zeolite LiX                         |                                 |                                 |                           |
|--------|-------|---------------------------------|---------------------------|---------------------------------|----------------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------|
|        |       | ~0.1 MPa                        |                           | ~1.0 MPa                        |                                        | ~0.1 MPa                            |                                 | ~1.0 MPa                        |                           |
|        |       | $q_{m} $ $(\text{mol kg}^{-1})$ | $B \times 10^3$ $(1/kPa)$ | $q_{m} $ $(\text{mol kg}^{-1})$ | $\frac{B \times 10^3}{(1/\text{kPa})}$ | $q_{\rm m}$ (mol kg <sup>-1</sup> ) | $\frac{B \times 10^3}{(1/kPa)}$ | $q_{m} $ $(\text{mol kg}^{-1})$ | $B \times 10^3$ $(1/kPa)$ |
| $CO_2$ | 293   | 4.37                            | 15.92                     | 6.79                            | 7.217                                  | 4.36                                | 328.0                           | 5.30                            | 128.0                     |
|        | 308   | 3.83                            | 11.43                     | 6.36                            | 4.933                                  | 3.72                                | 315.0                           | 4.76                            | 99.50                     |
|        | 323   | 3.44                            | 8.492                     | 5.90                            | 3.657                                  | 2.87                                | 246.8                           | 4.23                            | 43.50                     |
| CO     | 293   | 2.37                            | 3.008                     | 3.53                            | 1.700                                  | 1.77                                | 58.07                           | 2.88                            | 13.40                     |
|        | 308   | 2.31                            | 2.217                     | 3.42                            | 1.300                                  | 1.66                                | 38.94                           | 2.65                            | 10.90                     |
|        | 323   | 1.97                            | 1.907                     | 3.21                            | 1.100                                  | 1.55                                | 26.33                           | 2.47                            | 8.500                     |
| $N_2$  | 293   | 2.29                            | 2.300                     | 3.45                            | 1.350                                  | 1.55                                | 10.11                           | 2.43                            | 4.370                     |
|        | 308   | 2.27                            | 1.663                     | 3.33                            | 1.030                                  | 1.45                                | 6.474                           | 2.33                            | 3.100                     |
|        | 323   | 2.24                            | 1.247                     | 3.18                            | 0.821                                  | 1.44                                | 4.265                           | 2.18                            | 2.290                     |
| $CH_4$ | 293   | 3.11                            | 6.510                     | 4.53                            | 3.517                                  | 2.12                                | 7.116                           | 3.26                            | 3.500                     |
|        | 308   | 3.04                            | 4.010                     | 4.28                            | 2.414                                  | 2.14                                | 4.641                           | 3.12                            | 2.600                     |
|        | 323   | 2.96                            | 2.830                     | 4.18                            | 1.812                                  | 2.10                                | 3.253                           | 2.97                            | 2.000                     |
| Ar     | 293   | 3.33                            | 1.434                     | 4.71                            | 0.929                                  | 3.27                                | 0.390                           | 5.86                            | 0.218                     |
|        | 308   | 3.25                            | 1.074                     | 4.55                            | 0.721                                  | 3.07                                | 0.337                           | 5.80                            | 0.177                     |
|        | 323   | 2.74                            | 0.963                     | 4.35                            | 0.574                                  | 2.51                                | 0.336                           | 5.37                            | 0.156                     |
| $H_2$  |       |                                 |                           | 2.18                            | 0.255                                  |                                     |                                 | 0.68                            | 0.600                     |
|        |       |                                 |                           | 1.80                            | 0.246                                  |                                     |                                 | 0.64                            | 0.670                     |
|        |       |                                 |                           | 1.00                            | 0.364                                  |                                     |                                 | 0.55                            | 0.700                     |



Table 3 Parameters of Sips model at pressure up to 0.1 MPa and 1.0 MPa

| Gas    | T (k) | Activated ca         | rbon                      |      |                                                       |                           |      | Zeolite LiX                                                           |                           |      |                                                       |                           |      |
|--------|-------|----------------------|---------------------------|------|-------------------------------------------------------|---------------------------|------|-----------------------------------------------------------------------|---------------------------|------|-------------------------------------------------------|---------------------------|------|
|        |       | ~0.1 MPa             |                           |      | ∼1.0 MPa                                              |                           |      | ~0.1 MPa                                                              |                           |      | ∼1.0 MPa                                              |                           |      |
|        |       | $q_m \pmod{kg^{-1}}$ | $B \times 10^3$ $(1/kPa)$ | n    | $\begin{array}{c} q_m \\ (mol \ kg^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | n    | $\begin{array}{c} \overline{q_m} \\ (\text{mol kg}^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | n    | $\begin{array}{c} q_m \\ (mol \ kg^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | n    |
| $CO_2$ | 293   | 6.78                 | 6.142                     | 1.25 | 8.39                                                  | 3.923                     | 1.31 | 9.41                                                                  | 5.824                     | 3.81 | 8.60                                                  | 11.23                     | 3.65 |
|        | 308   | 6.05                 | 4.570                     | 1.20 | 8.10                                                  | 2.566                     | 1.29 | 8.67                                                                  | 4.403                     | 3.70 | 8.00                                                  | 7.712                     | 3.55 |
|        | 323   | 5.24                 | 3.864                     | 1.15 | 7.80                                                  | 1.793                     | 1.26 | 7.92                                                                  | 2.816                     | 3.59 | 7.40                                                  | 4.461                     | 3.46 |
| CO     | 293   | 2.67                 | 2.501                     | 1.02 | 4.20                                                  | 1.201                     | 1.11 | 2.38                                                                  | 25.10                     | 1.48 | 4.65                                                  | 2.595                     | 2.02 |
|        | 308   | 2.37                 | 2.112                     | 1.01 | 3.96                                                  | 0.980                     | 1.09 | 2.15                                                                  | 19.77                     | 1.34 | 4.32                                                  | 2.175                     | 1.90 |
|        | 323   | 2.07                 | 1.821                     | 0.99 | 3.73                                                  | 0.795                     | 1.07 | 1.91                                                                  | 15.86                     | 1.20 | 3.99                                                  | 1.868                     | 1.77 |
| $N_2$  | 293   | 4.05                 | 1.053                     | 1.06 | 4.29                                                  | 0.863                     | 1.11 | 1.80                                                                  | 7.473                     | 1.09 | 3.48                                                  | 1.696                     | 1.41 |
|        | 308   | 3.95                 | 0.805                     | 1.04 | 4.00                                                  | 0.722                     | 1.08 | 1.59                                                                  | 5.794                     | 1.03 | 3.15                                                  | 1.471                     | 1.30 |
|        | 323   | 3.86                 | 0.635                     | 1.03 | 3.71                                                  | 0.621                     | 1.06 | 1.37                                                                  | 4.640                     | 0.98 | 2.82                                                  | 1.272                     | 1.20 |
| $CH_4$ | 293   | 4.04                 | 4.079                     | 1.08 | 5.93                                                  | 1.798                     | 1.28 | 2.25                                                                  | 6.436                     | 1.02 | 4.00                                                  | 2.134                     | 1.22 |
|        | 308   | 3.88                 | 2.980                     | 0.99 | 5.73                                                  | 1.234                     | 1.22 | 2.17                                                                  | 4.551                     | 1.00 | 3.71                                                  | 1.770                     | 1.16 |
|        | 323   | 3.72                 | 2.582                     | 0.91 | 5.53                                                  | 0.998                     | 1.16 | 2.09                                                                  | 3.324                     | 0.99 | 3.41                                                  | 1.487                     | 1.10 |
| Ar     | 293   | 4.54                 | 0.962                     | 1.02 | 5.73                                                  | 0.645                     | 1.08 | 7.06                                                                  | 0.176                     | 1.00 | 5.30                                                  | 0.249                     | 0.99 |
|        | 308   | 4.34                 | 0.742                     | 1.02 | 5.32                                                  | 0.542                     | 1.05 | 6.70                                                                  | 0.163                     | 0.98 | 5.02                                                  | 0.213                     | 0.99 |
|        | 323   | 4.14                 | 0.586                     | 1.02 | 4.91                                                  | 0.470                     | 1.03 | 6.34                                                                  | 0.153                     | 0.97 | 4.74                                                  | 0.184                     | 0.99 |
| $H_2$  |       |                      |                           |      | 34.1                                                  | 0.005                     | 1.20 |                                                                       |                           |      | 15.5                                                  | 0.005                     | 1.30 |
|        |       |                      |                           |      | 33.6                                                  | 0.004                     | 1.20 |                                                                       |                           |      | 15.2                                                  | 0.005                     | 1.30 |
|        |       |                      |                           |      | 33.2                                                  | 0.003                     | 1.20 |                                                                       |                           |      | 14.8                                                  | 0.005                     | 1.29 |

 $\textbf{Table 4} \ \ \text{Parameters of Toth model at pressure up to 0.1 MPa and 1.0 MPa}$ 

| Gas    | T (K) | Activated ca                                          | rbon                      |      |                                                            |                           | Zeolite LiX |                                                       |                           |      |                                                       |                           |      |
|--------|-------|-------------------------------------------------------|---------------------------|------|------------------------------------------------------------|---------------------------|-------------|-------------------------------------------------------|---------------------------|------|-------------------------------------------------------|---------------------------|------|
|        |       | ~0.1 MPa                                              |                           |      | ~1.0 MPa                                                   |                           |             | ~0.1 MPa                                              |                           |      | ~1.0 MPa                                              |                           | -    |
|        |       | $\begin{array}{c} q_m \\ (mol \ kg^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | t    | $\begin{array}{c} q_m \\ (\text{mol kg}^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | t           | $\begin{array}{c} q_m \\ (mol \ kg^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | t    | $\begin{array}{c} q_m \\ (mol \ kg^{-1}) \end{array}$ | $B \times 10^3$ $(1/kPa)$ | t    |
| $CO_2$ | 293   | 16.2                                                  | 9.494                     | 0.40 | 9.97                                                       | 10.17                     | 0.54        | 9.70                                                  | 11,960                    | 0.24 | 6.84                                                  | 2,979                     | 0.34 |
|        | 308   | 12.3                                                  | 5.885                     | 0.46 | 9.44                                                       | 5.784                     | 0.57        | 5.46                                                  | 11,590                    | 0.30 | 6.53                                                  | 3,142                     | 0.31 |
|        | 323   | 11.0                                                  | 3.799                     | 0.50 | 9.02                                                       | 3.802                     | 0.59        | 5.29                                                  | 6,046                     | 0.27 | 6.38                                                  | 3,852                     | 0.27 |
| CO     | 293   | 5.12                                                  | 1.516                     | 0.69 | 5.12                                                       | 1.510                     | 0.69        | 5.71                                                  | 351.9                     | 0.26 | 15.5                                                  | 1,532                     | 0.16 |
|        | 308   | 4.98                                                  | 1.081                     | 0.73 | 4.96                                                       | 1.086                     | 0.72        | 3.08                                                  | 66.61                     | 0.44 | 10.8                                                  | 261.3                     | 0.20 |
|        | 323   | 4.48                                                  | 0.860                     | 0.75 | 4.48                                                       | 0.849                     | 0.77        | 2.73                                                  | 32.00                     | 0.51 | 8.41                                                  | 67.91                     | 0.24 |
| $N_2$  | 293   | 23.3                                                  | 0.260                     | 0.48 | 5.60                                                       | 1.028                     | 0.67        | 2.28                                                  | 8.283                     | 0.71 | 5.02                                                  | 6.361                     | 0.43 |
|        | 308   | 21.6                                                  | 0.192                     | 0.51 | 5.10                                                       | 0.778                     | 0.72        | 2.02                                                  | 5.235                     | 0.80 | 4.59                                                  | 3.343                     | 0.48 |
|        | 323   | 20.5                                                  | 0.145                     | 0.54 | 4.61                                                       | 0.624                     | 0.77        | 1.02                                                  | 5.726                     | 1.30 | 3.83                                                  | 2.048                     | 0.57 |
| $CH_4$ | 293   | 6.08                                                  | 3.900                     | 0.66 | 6.08                                                       | 3.902                     | 0.66        | 4.39                                                  | 4.068                     | 0.64 | 4.80                                                  | 3.880                     | 0.60 |
|        | 308   | 5.57                                                  | 2.380                     | 0.72 | 5.57                                                       | 2.379                     | 0.72        | 3.87                                                  | 2.833                     | 0.72 | 4.25                                                  | 2.604                     | 0.69 |
|        | 323   | 5.18                                                  | 1.660                     | 0.80 | 5.18                                                       | 1.655                     | 0.80        | 3.52                                                  | 1.989                     | 0.80 | 3.90                                                  | 1.756                     | 0.74 |
| Ar     | 293   | 32.0                                                  | 0.162                     | 0.52 | 7.45                                                       | 0.675                     | 0.72        | 24.4                                                  | 0.058                     | 0.49 | 4.07                                                  | 0.308                     | 1.21 |
|        | 308   | 31.6                                                  | 0.116                     | 0.55 | 6.68                                                       | 0.537                     | 0.77        | 20.4                                                  | 0.056                     | 0.50 | 3.81                                                  | 0.266                     | 1.21 |
|        | 323   | 30.5                                                  | 0.088                     | 0.58 | 6.02                                                       | 0.438                     | 0.82        | 16.8                                                  | 0.054                     | 0.54 | 3.50                                                  | 0.235                     | 1.21 |
| $H_2$  |       |                                                       |                           |      | 1,795                                                      | 0.001                     | 0.20        |                                                       |                           |      | 140                                                   | 0.011                     | 0.20 |
|        |       |                                                       |                           |      | 1,580                                                      | 0.001                     | 0.19        |                                                       |                           |      | 134                                                   | 0.010                     | 0.20 |
|        |       |                                                       |                           |      | 1,250                                                      | 0.001                     | 0.20        |                                                       |                           |      | 125                                                   | 0.010                     | 0.20 |



**Table 5** Temperature dependent parameters of Sips model at pressure up to 0.1 MPa

| Gas     | ~0.1 MPa                               |                                                               |                               |                    |                |                    |
|---------|----------------------------------------|---------------------------------------------------------------|-------------------------------|--------------------|----------------|--------------------|
|         | $\overline{K_1 \text{ (mol kg}^{-1})}$ | $K_2 \times 10^3 \text{ (mol kg}^{-1} \text{ K}^{-1}\text{)}$ | $K_3 \times 10^6  (kPa^{-1})$ | K <sub>4</sub> (K) | K <sub>5</sub> | K <sub>6</sub> (K) |
| Activat | ed carbon                              |                                                               |                               |                    |                |                    |
| $CO_2$  | 21.88                                  | -5.150                                                        | 34.38                         | 1,517              | 0.187          | 311.9              |
| CO      | 8.469                                  | -1.980                                                        | 81.48                         | 1,003              | 0.698          | 95.49              |
| $N_2$   | 5.955                                  | -0.650                                                        | 4.447                         | 1,601              | 0.787          | 78.85              |
| $CH_4$  | 7.177                                  | -1.070                                                        | 25.50                         | 1,481              | -0.833         | 562.1              |
| Ar      | 8.499                                  | -1.350                                                        | 4.850                         | 1,550              | 0.980          | 12.61              |
| Zeolite | LiX                                    |                                                               |                               |                    |                |                    |
| $CO_2$  | 24.00                                  | -4.980                                                        | 2.579                         | 2,270              | 1.444          | 693.5              |
| CO      | 6.971                                  | -1.567                                                        | 183.4                         | 1,440              | -1.542         | 885.7              |
| $N_2$   | 5.959                                  | -1.420                                                        | 43.21                         | 1,510              | -0.001         | 318.4              |
| $CH_4$  | 3.789                                  | -0.527                                                        | 5.233                         | 2,084              | 0.692          | 95.8               |
| Ar      | 14.04                                  | -2.383                                                        | 37.63                         | 452                | 0.613          | 114.1              |

**Table 6** Temperature dependent parameters of Sips model at pressure up to 1.0 MPa

| Gas     | ∼1.0 MPa                               |                                                               |                               |                    |                |                    |
|---------|----------------------------------------|---------------------------------------------------------------|-------------------------------|--------------------|----------------|--------------------|
|         | $\overline{K_1 \text{ (mol kg}^{-1})}$ | $K_2 \times 10^3 \text{ (mol kg}^{-1} \text{ K}^{-1}\text{)}$ | $K_3 \times 10^6  (kPa^{-1})$ | K <sub>4</sub> (K) | K <sub>5</sub> | K <sub>6</sub> (K) |
| Activat | ed carbon                              |                                                               |                               |                    |                |                    |
| $CO_2$  | 14.12                                  | -19.57                                                        | 0.789                         | 2,494              | 0.764          | 160.8              |
| CO      | 8.810                                  | -15.73                                                        | 16.24                         | 1,261              | 0.587          | 154.5              |
| $N_2$   | 9.947                                  | -19.30                                                        | 22.37                         | 1,070              | 0.508          | 176.6              |
| $CH_4$  | 9.849                                  | -13.37                                                        | 3.181                         | 1,850              | -0.033         | 384.6              |
| Ar      | 13.74                                  | -27.33                                                        | 21.14                         | 1,001              | 0.592          | 141.9              |
| $H_2$   | 43.50                                  | -32.00                                                        | 0.020                         | 1,650              | 1.158          | 12.61              |
| Zeolite | LiX                                    |                                                               |                               |                    |                |                    |
| $CO_2$  | 20.28                                  | -39.87                                                        | 0.759                         | 2,820              | 1.552          | 614.9              |
| CO      | 11.10                                  | -22.00                                                        | 72.10                         | 1,050              | -0.627         | 775.1              |
| $N_2$   | 9.844                                  | -21.73                                                        | 76.19                         | 910                | -0.852         | 661.9              |
| $CH_4$  | 9.806                                  | -19.80                                                        | 43.69                         | 1,140              | -0.039         | 368.9              |
| Ar      | 10.76                                  | -18.63                                                        | 9.699                         | 950                | 0.959          | 9.456              |
| $H_2$   | 22.38                                  | -233.3                                                        | 1.362                         | 396                | 1.183          | 34.72              |

where P is pressure, T is temperature, R is the gas constant, and  $Q_{st}$  is the isosteric heat of adsorption.

When the surfaces are energetically homogeneous and there is no interaction between the adsorbed molecules, the isosteric enthalpy of adsorption is independent of the amount adsorbed.(Hill 1949) However, if different levels of surface energy exist and the interactions between the adsorbed molecules cannot be neglected, the isosteric heat of adsorption varies with the surface coverage (Bae and Lee 2005).

Figure 3a, b shows the isosteric heats of adsorption for activated carbon and zeolite LiX. The figures with a high

loading range were obtained from the temperature dependent Sips isotherm model fitted in the full experimental range ( $\sim 1.0$  MPa), while the extended figure of the low loading range used parameters fitted by the low pressure range ( $\sim 0.1$  MPa). Adsorption isotherms of H<sub>2</sub> on each adsorbent were not measured due to the low adsorption amount in the low pressure range ( $\sim 0.1$  MPa). Therefore, the isosteric heat of adsorption was calculated from the isotherm parameters of full pressure range.

The order of heat of adsorption was  $CO_2 \gg CH_4 > CO \ge N_2 \ge Ar \gg H_2$  for activated carbon and  $CO_2 \gg CO > N_2 > CH_4 > Ar \gg H_2$  for zeolite LiX for isotherms



 $\textbf{Table 7} \ \ \text{Experimental adsorption isotherm data for $CO_2$ on activated carbon}$ 

| P (kPa)<br>293 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>308 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>323 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) |
|-----------------------|---------------------------|---------|---------------------------|-----------------------|---------------------------|---------|---------------------------|-----------------------|---------------------------|---------|---------------------------|
| 9.79                  | 0.657                     | 370     | 4.790                     | 8.77                  | 0.389                     | 387     | 4.029                     | 6.73                  | 0.208                     | 406     | 3.410                     |
| 19.0                  | 1.040                     | 393     | 4.886                     | 18.3                  | 0.686                     | 410     | 4.125                     | 14.5                  | 0.398                     | 430     | 3.499                     |
| 28.4                  | 1.347                     | 416     | 4.978                     | 29.5                  | 0.966                     | 434     | 4.215                     | 23.3                  | 0.577                     | 455     | 3.586                     |
| 37.2                  | 1.590                     | 440     | 5.066                     | 37.9                  | 1.144                     | 458     | 4.303                     | 32.7                  | 0.747                     | 480     | 3.669                     |
| 46.8                  | 1.820                     | 465     | 5.149                     | 46.7                  | 1.311                     | 483     | 4.387                     | 42.9                  | 0.907                     | 505     | 3.749                     |
| 54.9                  | 1.994                     | 490     | 5.229                     | 55.9                  | 1.470                     | 508     | 4.470                     | 53.3                  | 1.058                     | 531     | 3.827                     |
| 65.7                  | 2.203                     | 515     | 5.306                     | 65.4                  | 1.619                     | 534     | 4.547                     | 64.3                  | 1.200                     | 557     | 3.901                     |
| 74.7                  | 2.362                     | 541     | 5.378                     | 75.3                  | 1.762                     | 560     | 4.623                     | 75.6                  | 1.337                     | 583     | 3.973                     |
| 83.9                  | 2.511                     | 568     | 5.447                     | 82.9                  | 1.865                     | 586     | 4.695                     | 87.0                  | 1.463                     | 610     | 4.042                     |
| 92.7                  | 2.650                     | 595     | 5.514                     | 93.0                  | 1.993                     | 613     | 4.765                     | 97.5                  | 1.573                     | 637     | 4.109                     |
| 101                   | 2.762                     | 622     | 5.576                     | 102                   | 2.102                     | 640     | 4.830                     | 102                   | 1.621                     | 664     | 4.175                     |
| 114                   | 2.934                     | 649     | 5.636                     | 117                   | 2.265                     | 667     | 4.895                     | 119                   | 1.772                     | 692     | 4.237                     |
| 128                   | 3.100                     | 677     | 5.694                     | 132                   | 2.422                     | 695     | 4.956                     | 135                   | 1.917                     | 720     | 4.297                     |
| 142                   | 3.262                     | 705     | 5.748                     | 148                   | 2.573                     | 723     | 5.016                     | 153                   | 2.060                     | 748     | 4.355                     |
| 157                   | 3.418                     | 733     | 5.800                     | 164                   | 2.719                     | 751     | 5.074                     | 171                   | 2.194                     | 776     | 4.412                     |
| 173                   | 3.567                     | 762     | 5.850                     | 182                   | 2.860                     | 779     | 5.129                     | 189                   | 2.325                     | 805     | 4.465                     |
| 190                   | 3.714                     | 791     | 5.897                     | 200                   | 2.998                     | 808     | 5.182                     | 209                   | 2.451                     | 834     | 4.518                     |
| 207                   | 3.853                     | 820     | 5.943                     | 218                   | 3.129                     | 837     | 5.233                     | 229                   | 2.573                     | 863     | 4.568                     |
| 225                   | 3.988                     | 850     | 5.986                     | 237                   | 3.256                     | 866     | 5.282                     | 249                   | 2.691                     | 893     | 4.616                     |
| 244                   | 4.118                     | 879     | 6.026                     | 257                   | 3.380                     | 896     | 5.330                     | 270                   | 2.805                     | 922     | 4.664                     |
| 263                   | 4.241                     | 909     | 6.065                     | 277                   | 3.497                     | 925     | 5.375                     | 291                   | 2.914                     | 952     | 4.709                     |
| 283                   | 4.361                     | 939     | 6.103                     | 298                   | 3.612                     | 955     | 5.419                     | 313                   | 3.020                     | 981     | 4.753                     |
| 304                   | 4.476                     | 969     | 6.137                     | 319                   | 3.722                     | 985     | 5.461                     | 336                   | 3.122                     | 1,011   | 4.795                     |
| 325                   | 4.585                     | 999     | 6.171                     | 341                   | 3.828                     | 1,015   | 5.502                     | 358                   | 3.221                     |         |                           |
| DQ <sub>aver</sub> (I | HP, LP): 0.32, 0          | 0.46 %  |                           | DQ <sub>aver</sub> (I | HP, LP): 0.40, 0          | .23 %   |                           | DQ <sub>aver</sub> (I | HP, LP): 0.43, 0          | .29 %   |                           |

Table 8 Experimental adsorption isotherm data for CO on activated carbon

| P (kPa)<br>293 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>308 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>323 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) |
|-----------------------|---------------------------|---------|---------------------------|-----------------------|---------------------------|---------|---------------------------|-----------------------|---------------------------|---------|---------------------------|
| 9.79                  | 0.069                     | 391     | 1.414                     | 10.1                  | 0.051                     | 358     | 1.094                     | 8.02                  | 0.031                     | 432     | 1.000                     |
| 19.0                  | 0.129                     | 424     | 1.480                     | 18.2                  | 0.091                     | 391     | 1.155                     | 15.4                  | 0.058                     | 465     | 1.052                     |
| 30.1                  | 0.198                     | 456     | 1.543                     | 31.5                  | 0.151                     | 423     | 1.217                     | 24.1                  | 0.089                     | 498     | 1.101                     |
| 37.2                  | 0.240                     | 488     | 1.601                     | 37.5                  | 0.177                     | 456     | 1.277                     | 40.7                  | 0.143                     | 532     | 1.149                     |
| 47.8                  | 0.298                     | 520     | 1.662                     | 46.8                  | 0.217                     | 489     | 1.334                     | 55.5                  | 0.189                     | 565     | 1.197                     |
| 59.4                  | 0.359                     | 553     | 1.714                     | 52.2                  | 0.239                     | 522     | 1.388                     | 72.1                  | 0.238                     | 599     | 1.241                     |
| 65.7                  | 0.390                     | 585     | 1.768                     | 62.0                  | 0.279                     | 555     | 1.440                     | 79.1                  | 0.259                     | 632     | 1.281                     |
| 74.0                  | 0.431                     | 618     | 1.819                     | 69.1                  | 0.306                     | 588     | 1.492                     | 88.0                  | 0.282                     | 666     | 1.323                     |
| 83.9                  | 0.476                     | 651     | 1.863                     | 77.2                  | 0.337                     | 621     | 1.539                     | 93.4                  | 0.295                     | 700     | 1.361                     |
| 97.5                  | 0.535                     | 683     | 1.912                     | 84.8                  | 0.365                     | 654     | 1.586                     | 107                   | 0.335                     | 734     | 1.402                     |
| 110                   | 0.593                     | 716     | 1.958                     | 91.0                  | 0.387                     | 688     | 1.629                     | 139                   | 0.422                     | 767     | 1.438                     |
| 141                   | 0.710                     | 749     | 2.001                     | 104                   | 0.434                     | 721     | 1.674                     | 171                   | 0.497                     | 801     | 1.475                     |
| 171                   | 0.818                     | 782     | 2.042                     | 135                   | 0.535                     | 754     | 1.714                     | 203                   | 0.572                     | 835     | 1.511                     |
| 202                   | 0.922                     | 815     | 2.079                     | 166                   | 0.627                     | 787     | 1.750                     | 236                   | 0.641                     | 868     | 1.545                     |
| 233                   | 1.019                     | 848     | 2.120                     | 198                   | 0.717                     | 821     | 1.790                     | 268                   | 0.708                     | 902     | 1.578                     |
| 265                   | 1.108                     | 881     | 2.157                     | 229                   | 0.802                     | 854     | 1.827                     | 301                   | 0.775                     |         |                           |
| 296                   | 1.192                     | 914     | 2.193                     | 262                   | 0.880                     | 888     | 1.859                     | 334                   | 0.832                     |         |                           |
| 328                   | 1.270                     |         |                           | 294                   | 0.953                     | 921     | 1.895                     | 366                   | 0.891                     |         |                           |
| DQ <sub>aver</sub> (I | HP, LP): 0.72, 0          | 0.22 %  |                           | DQ <sub>aver</sub> (I | HP, LP): 0.92, 0          | 0.13 %  |                           | DQ <sub>aver</sub> (I | HP, LP): 0.32, 1          | .76 %   |                           |



 $\textbf{Table 9} \ \ \text{Experimental adsorption isotherm data for } N_2 \ \text{on activated carbon}$ 

| P (kPa)<br>293 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>308 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>323 K      | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) |
|-----------------------|---------------------------|---------|---------------------------|-----------------------|---------------------------|---------|---------------------------|-----------------------|---------------------------|---------|---------------------------|
| 9.75                  | 0.050                     | 421     | 1.231                     | 10.9                  | 0.040                     | 466     | 1.069                     | 11.4                  | 0.031                     | 513     | 0.938                     |
| 18.8                  | 0.095                     | 450     | 1.282                     | 20.8                  | 0.076                     | 495     | 1.114                     | 22.4                  | 0.061                     | 543     | 0.976                     |
| 28.0                  | 0.139                     | 478     | 1.332                     | 31.1                  | 0.112                     | 525     | 1.158                     | 33.0                  | 0.089                     | 574     | 1.014                     |
| 37.1                  | 0.180                     | 507     | 1.381                     | 41.2                  | 0.146                     | 555     | 1.200                     | 43.7                  | 0.116                     | 605     | 1.051                     |
| 46.2                  | 0.220                     | 536     | 1.428                     | 51.2                  | 0.178                     | 584     | 1.242                     | 54.2                  | 0.142                     | 635     | 1.086                     |
| 55.4                  | 0.259                     | 565     | 1.474                     | 61.0                  | 0.209                     | 614     | 1.282                     | 64.4                  | 0.166                     | 666     | 1.121                     |
| 64.6                  | 0.296                     | 595     | 1.518                     | 70.7                  | 0.239                     | 645     | 1.321                     | 74.6                  | 0.191                     | 697     | 1.155                     |
| 73.6                  | 0.332                     | 624     | 1.561                     | 80.2                  | 0.267                     | 675     | 1.359                     | 84.9                  | 0.214                     | 729     | 1.188                     |
| 82.7                  | 0.366                     | 654     | 1.602                     | 89.6                  | 0.294                     | 705     | 1.396                     | 94.5                  | 0.236                     | 760     | 1.220                     |
| 91.5                  | 0.399                     | 684     | 1.644                     | 98.1                  | 0.319                     | 736     | 1.432                     | 104                   | 0.256                     | 791     | 1.252                     |
| 99.2                  | 0.425                     | 713     | 1.682                     | 102                   | 0.329                     | 767     | 1.467                     | 132                   | 0.316                     | 822     | 1.284                     |
| 103                   | 0.439                     | 744     | 1.721                     | 128                   | 0.399                     | 797     | 1.503                     | 159                   | 0.374                     | 854     | 1.313                     |
| 128                   | 0.520                     | 774     | 1.758                     | 155                   | 0.467                     | 828     | 1.536                     | 188                   | 0.430                     | 885     | 1.343                     |
| 153                   | 0.599                     | 804     | 1.794                     | 182                   | 0.532                     | 860     | 1.569                     | 216                   | 0.484                     | 917     | 1.372                     |
| 178                   | 0.674                     | 834     | 1.831                     | 209                   | 0.595                     | 890     | 1.600                     | 245                   | 0.535                     | 948     | 1.401                     |
| 204                   | 0.745                     | 865     | 1.865                     | 237                   | 0.655                     | 922     | 1.631                     | 274                   | 0.585                     | 980     | 1.429                     |
| 230                   | 0.815                     | 895     | 1.899                     | 265                   | 0.713                     | 953     | 1.663                     | 303                   | 0.634                     | 1,012   | 1.457                     |
| 256                   | 0.881                     | 926     | 1.932                     | 293                   | 0.768                     | 984     | 1.693                     | 333                   | 0.681                     |         |                           |
| 283                   | 0.945                     | 956     | 1.964                     | 321                   | 0.823                     | 1,016   | 1.723                     | 362                   | 0.727                     |         |                           |
| 310                   | 1.007                     | 987     | 1.996                     | 349                   | 0.876                     |         |                           | 392                   | 0.771                     |         |                           |
| 337                   | 1.066                     | 1,018   | 2.026                     | 378                   | 0.927                     |         |                           | 422                   | 0.813                     |         |                           |
| 365                   | 1.123                     |         |                           | 407                   | 0.976                     |         |                           | 452                   | 0.856                     |         |                           |
| DQ <sub>aver</sub> (I | HP, LP): 0.93, 0          | 0.79 %  |                           | DQ <sub>aver</sub> (I | HP, LP): 0.78, 0          | 0.58 %  |                           | DQ <sub>aver</sub> (I | HP, LP): 1.62, 0          | 0.42 %  |                           |

Table 10 Experimental adsorption isotherm data for CH<sub>4</sub> on activated carbon

| P<br>(kPa)<br>293 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |
|---------------------|------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|
| 8.31                | 0.189                        | 435        | 2.673                        | 8.13                | 0.095                        | 392        | 2.063                        | 7.91                | 0.060                        | 386        | 1.691                        |
| 15.0                | 0.311                        | 467        | 2.753                        | 17.2                | 0.193                        | 423        | 2.148                        | 15.6                | 0.116                        | 418        | 1.771                        |
| 22.4                | 0.433                        | 499        | 2.827                        | 25.8                | 0.278                        | 454        | 2.224                        | 24.2                | 0.177                        | 450        | 1.844                        |
| 34.4                | 0.600                        | 531        | 2.901                        | 34.7                | 0.361                        | 486        | 2.301                        | 33.2                | 0.240                        | 482        | 1.920                        |
| 46.8                | 0.749                        | 562        | 2.971                        | 43.1                | 0.436                        | 518        | 2.370                        | 42.1                | 0.300                        | 515        | 1.989                        |
| 59.3                | 0.883                        | 595        | 3.032                        | 53.0                | 0.519                        | 550        | 2.435                        | 50.5                | 0.354                        | 547        | 2.056                        |
| 71.9                | 1.004                        | 627        | 3.097                        | 61.5                | 0.589                        | 583        | 2.497                        | 59.6                | 0.411                        | 580        | 2.118                        |
| 84.7                | 1.116                        | 659        | 3.156                        | 74.5                | 0.699                        | 615        | 2.550                        | 68.8                | 0.468                        | 613        | 2.183                        |
| 95.7                | 1.211                        | 692        | 3.217                        | 87.3                | 0.799                        | 648        | 2.605                        | 74.2                | 0.499                        | 646        | 2.240                        |
| 106                 | 1.291                        | 724        | 3.272                        | 99.6                | 0.885                        | 680        | 2.658                        | 83.0                | 0.592                        | 679        | 2.297                        |
| 134                 | 1.476                        | 757        | 3.324                        | 110                 | 0.956                        | 713        | 2.709                        | 95.0                | 0.658                        | 712        | 2.351                        |
| 162                 | 1.647                        | 790        | 3.374                        | 124                 | 1.019                        | 746        | 2.754                        | 107                 | 0.721                        | 745        | 2.405                        |
| 191                 | 1.798                        | 822        | 3.427                        | 152                 | 1.156                        | 779        | 2.801                        | 137                 | 0.864                        | 778        | 2.458                        |
| 220                 | 1.940                        | 855        | 3.468                        | 180                 | 1.279                        | 812        | 2.844                        | 167                 | 0.993                        | 811        | 2.507                        |
| 250                 | 2.067                        | 888        | 3.513                        | 209                 | 1.421                        | 845        | 2.885                        | 197                 | 1.115                        | 844        | 2.554                        |
| 280                 | 2.187                        | 921        | 3.558                        | 238                 | 1.546                        | 878        | 2.924                        | 228                 | 1.224                        | 877        | 2.601                        |
| 311                 | 2.298                        |            |                              | 269                 | 1.664                        | 911        | 2.961                        | 259                 | 1.328                        | 911        | 2.646                        |
| 341                 | 2.398                        |            |                              | 299                 | 1.773                        | 944        | 2.999                        | 291                 | 1.425                        |            |                              |
| 372                 | 2.497                        |            |                              | 330                 | 1.876                        |            |                              | 322                 | 1.520                        |            |                              |
| DQ <sub>aver</sub>  | (HP, LP): 0.93               | 3, 3.88 %  | 1                            | DQ <sub>aver</sub>  | (HP, LP): 3.35               | 5, 1.14 %  |                              | DQ <sub>aver</sub>  | (HP, LP): 4.30               | 0, 3.88 %  |                              |



Table 11 Experimental adsorption isotherm data for Ar on activated carbon

| P<br>(kPa)<br>293 K  | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |
|----------------------|------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|
| 11.9                 | 0.056                        | 439        | 1.352                        | 12.0                | 0.042                        | 453        | 1.112                        | 12.4                | 0.032                        | 468        | 0.917                        |
| 22.8                 | 0.106                        | 468        | 1.415                        | 23.5                | 0.080                        | 483        | 1.168                        | 24.3                | 0.062                        | 499        | 0.965                        |
| 33.7                 | 0.154                        | 497        | 1.476                        | 34.9                | 0.117                        | 513        | 1.223                        | 35.8                | 0.091                        | 530        | 1.010                        |
| 44.3                 | 0.199                        | 527        | 1.534                        | 46.1                | 0.153                        | 544        | 1.273                        | 47.0                | 0.119                        |            | 1.060                        |
| 55.1                 | 0.244                        | 556        | 1.593                        | 57.0                | 0.187                        | 574        | 1.325                        | 58.2                | 0.145                        | 561        | 1.100                        |
| 65.4                 | 0.285                        | 586        | 1.650                        | 67.7                | 0.220                        | 605        | 1.374                        | 69.0                | 0.171                        | 624        | 1.150                        |
| 75.7                 | 0.325                        | 616        | 1.704                        | 78.3                | 0.252                        | 635        | 1.421                        | 79.4                | 0.195                        | 655        | 1.190                        |
| 85.6                 | 0.362                        | 646        | 1.758                        | 88.7                | 0.282                        | 666        | 1.470                        | 89.9                | 0.219                        | 687        | 1.230                        |
| 94.7                 | 0.399                        | 676        | 1.810                        | 98.2                | 0.311                        | 697        | 1.516                        | 99.7                | 0.239                        | 719        | 1.270                        |
| 103                  | 0.430                        | 707        | 1.860                        | 103                 | 0.323                        | 728        | 1.561                        | 105                 | 0.250                        | 750        | 1.310                        |
| 129                  | 0.520                        | 737        | 1.912                        | 131                 | 0.401                        | 759        | 1.605                        | 134                 | 0.314                        | 782        | 1.350                        |
| 156                  | 0.611                        | 767        | 1.958                        | 159                 | 0.475                        | 790        | 1.649                        | 164                 | 0.377                        | 814        | 1.380                        |
| 183                  | 0.696                        | 798        | 2.006                        | 188                 | 0.550                        | 821        | 1.690                        | 194                 | 0.439                        | 846        | 1.420                        |
| 211                  | 0.777                        | 828        | 2.052                        | 216                 | 0.619                        | 852        | 1.731                        | 224                 | 0.497                        | 877        | 1.460                        |
| 239                  | 0.858                        | 859        | 2.095                        | 245                 | 0.688                        | 883        | 1.773                        | 254                 | 0.555                        | 909        | 1.500                        |
| 267                  | 0.935                        | 890        | 2.141                        | 274                 | 0.754                        | 915        | 1.814                        | 284                 | 0.610                        | 941        | 1.530                        |
| 295                  | 1.011                        | 921        | 2.184                        | 304                 | 0.818                        | 946        | 1.854                        | 314                 | 0.666                        | 973        | 1.570                        |
| 323                  | 1.084                        | 951        | 2.226                        | 333                 | 0.879                        | 978        | 1.892                        | 345                 | 0.719                        |            |                              |
| 352                  | 1.154                        | 982        | 2.269                        | 363                 | 0.940                        | 1,009      | 1.931                        | 376                 | 0.771                        |            |                              |
| 380                  | 1.222                        | 1,013      | 2.308                        | 393                 | 0.999                        |            |                              | 406                 | 0.821                        |            |                              |
| DQ <sub>aver</sub> ( | (HP, LP): 0.63               | 3, 0.19 %  |                              | DQ <sub>aver</sub>  | (HP, LP): 0.70               | 0, 0.30 %  |                              | DQ <sub>aver</sub>  | (HP, LP): 0.30               | 0, 0.42 %  |                              |

Table 12 Experimental adsorption isotherm data for H<sub>2</sub> on activated carbon

| P<br>(kPa)<br>293 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |
|---------------------|------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|
| 99.3                | 0.062                        | 505        | 0.247                        | 96.9                | 0.051                        | 511        | 0.199                        | 97.8                | 0.044                        | 515        | 0.155                        |
| 102                 | 0.063                        | 538        | 0.261                        | 100                 | 0.051                        | 545        | 0.210                        | 101                 | 0.045                        | 549        | 0.163                        |
| 135                 | 0.079                        | 572        | 0.276                        | 134                 | 0.065                        | 579        | 0.222                        | 135                 | 0.055                        | 584        | 0.172                        |
| 169                 | 0.095                        | 606        | 0.290                        | 169                 | 0.077                        | 613        | 0.234                        | 169                 | 0.064                        | 619        | 0.182                        |
| 202                 | 0.111                        | 640        | 0.304                        | 203                 | 0.090                        | 648        | 0.246                        | 204                 | 0.073                        | 653        | 0.189                        |
| 235                 | 0.126                        | 673        | 0.319                        | 237                 | 0.102                        | 682        | 0.257                        | 238                 | 0.082                        | 687        | 0.199                        |
| 269                 | 0.142                        | 707        | 0.332                        | 271                 | 0.115                        | 716        | 0.269                        | 273                 | 0.092                        | 722        | 0.207                        |
| 302                 | 0.157                        | 741        | 0.347                        | 305                 | 0.127                        | 750        | 0.280                        | 307                 | 0.1                          | 756        | 0.215                        |
| 336                 | 0.171                        | 774        | 0.360                        | 340                 | 0.139                        | 785        | 0.291                        | 342                 | 0.109                        | 791        | 0.223                        |
| 370                 | 0.186                        | 808        | 0.374                        | 374                 | 0.150                        | 819        | 0.303                        | 377                 | 0.118                        | 825        | 0.232                        |
| 403                 | 0.202                        | 842        | 0.387                        | 408                 | 0.162                        | 853        | 0.315                        | 411                 | 0.128                        | 860        | 0.241                        |
| 437                 | 0.217                        | 876        | 0.401                        | 442                 | 0.174                        | 887        | 0.326                        | 446                 | 0.136                        | 894        | 0.248                        |
| 471                 | 0.231                        | 909        | 0.415                        | 477                 | 0.186                        | 921        | 0.338                        | 480                 | 0.145                        | 929        | 0.257                        |
| DQ <sub>aver</sub>  | (HP): 2.71 %                 |            |                              | $DQ_{aver}$         | (HP): 2.26 %                 |            |                              | $DQ_{aver}$         | (HP): 2.02 %                 |            |                              |

in both the low pressure range (  $\sim\!0.1~MPa)$  and high pressure range (  $\sim\!1.0~MPa)$ . The isosteric heat of  $CO_2$  on zeolite LiX was much higher than that on activated carbon, which

implied a strong adsorption affinity between zeolite LiX and  $CO_2$ . In addition, the isosteric heats of CO and  $N_2$  on zeolite LiX were also higher than those of activated carbon. On the



 $\textbf{Table 13} \ \ \text{Experimental adsorption isotherm data for $CO_2$ on zeolite $LiX$}$ 

| P (kPa)<br>293 K                          | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>308 K                          | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>323 K                          | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) |  |
|-------------------------------------------|---------------------------|---------|---------------------------|-------------------------------------------|---------------------------|---------|---------------------------|-------------------------------------------|---------------------------|---------|---------------------------|--|
| 0.46                                      | 1.058                     | 218     | 5.068                     | 1.04                                      | 1.745                     | 330     | 4.639                     | 2.05                                      | 1.269                     | 384     | 3.990                     |  |
| 0.65                                      | 1.317                     | 248     | 5.130                     | 1.99                                      | 1.949                     | 361     | 4.686                     | 3.67                                      | 1.462                     | 415     | 4.035                     |  |
| 0.96                                      | 1.574                     | 278     | 5.180                     | 3.55                                      | 2.145                     | 393     | 4.728                     | 6.12                                      | 1.642                     | 447     | 4.076                     |  |
| 1.53                                      | 1.827                     | 309     | 5.226                     | 5.87                                      | 2.330                     | 425     | 4.765                     | 9.55                                      | 1.810                     | 479     | 4.115                     |  |
| 2.54                                      | 2.077                     | 340     | 5.264                     | 8.97                                      | 2.504                     | 457     | 4.802                     | 13.9                                      | 1.965                     | 512     | 4.151                     |  |
| 4.05                                      | 2.317                     | 372     | 5.296                     | 12.8                                      | 2.669                     | 490     | 4.834                     | 19.1                                      | 2.110                     | 544     | 4.183                     |  |
| 6.12                                      | 2.550                     | 404     | 5.327                     | 17.4                                      | 2.824                     | 522     | 4.863                     | 25.2                                      | 2.244                     | 577     | 4.213                     |  |
| 8.74                                      | 2.775                     | 436     | 5.354                     | 22.7                                      | 2.967                     | 555     | 4.891                     | 31.9                                      | 2.367                     | 610     | 4.240                     |  |
| 11.9                                      | 2.990                     | 468     | 5.376                     | 28.7                                      | 3.103                     | 588     | 4.915                     | 39.4                                      | 2.482                     | 643     | 4.266                     |  |
| 15.6                                      | 3.196                     | 501     | 5.397                     | 35.4                                      | 3.229                     | 621     | 4.939                     | 47.4                                      | 2.587                     | 677     | 4.290                     |  |
| 19.9                                      | 3.390                     | 533     | 5.416                     | 42.7                                      | 3.344                     | 654     | 4.961                     | 56.0                                      | 2.683                     | 710     | 4.312                     |  |
| 24.9                                      | 3.573                     | 566     | 5.432                     | 50.7                                      | 3.449                     | 688     | 4.981                     | 65.1                                      | 2.772                     | 744     | 4.334                     |  |
| 30.6                                      | 3.746                     | 599     | 5.445                     | 59.2                                      | 3.544                     | 721     | 5.002                     | 74.5                                      | 2.852                     | 777     | 4.353                     |  |
| 37.1                                      | 3.905                     | 632     | 5.456                     | 68.4                                      | 3.630                     | 754     | 5.018                     | 84.3                                      | 2.925                     | 811     | 4.372                     |  |
| 44.4                                      | 4.050                     | 665     | 5.466                     | 77.9                                      | 3.707                     | 788     | 5.036                     | 93.7                                      | 3.004                     | 845     | 4.391                     |  |
| 52.4                                      | 4.180                     | 698     | 5.473                     | 87.0                                      | 3.790                     | 821     | 5.053                     | 103                                       | 3.078                     | 879     | 4.409                     |  |
| 61.3                                      | 4.299                     | 731     | 5.481                     | 96.3                                      | 3.867                     | 855     | 5.066                     | 126                                       | 3.232                     | 912     | 4.424                     |  |
| 70.7                                      | 4.404                     | 764     | 5.485                     | 106                                       | 3.935                     | 889     | 5.079                     | 151                                       | 3.367                     |         |                           |  |
| 80.7                                      | 4.496                     | 798     | 5.488                     | 130                                       | 4.077                     | 922     | 5.096                     | 177                                       | 3.482                     |         |                           |  |
| 90.0                                      | 4.568                     | 831     | 5.492                     | 155                                       | 4.197                     |         |                           | 204                                       | 3.584                     |         |                           |  |
| 99.5                                      | 4.635                     | 865     | 5.493                     | 182                                       | 4.300                     |         |                           | 232                                       | 3.674                     |         |                           |  |
| 110                                       | 4.695                     | 898     | 5.494                     | 210                                       | 4.386                     |         |                           | 261                                       | 3.753                     |         |                           |  |
| 135                                       | 4.815                     | 931     | 5.493                     | 239                                       | 4.463                     |         |                           | 291                                       | 3.823                     |         |                           |  |
| 161                                       | 4.915                     |         |                           | 268                                       | 4.529                     |         |                           | 321                                       | 3.884                     |         |                           |  |
| DQ <sub>aver</sub> (HP, LP): 0.69, 0.01 % |                           |         |                           | DQ <sub>aver</sub> (HP, LP): 1.65, 1.19 % |                           |         |                           | DQ <sub>aver</sub> (HP, LP): 0.17, 0.01 % |                           |         |                           |  |

Table 14 Experimental adsorption isotherm data for CO on zeolite LiX

| P (kPa)<br>293 K                          | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>308 K                           | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) | P (kPa)<br>323 K                          | q (mol kg <sup>-1</sup> ) | P (kPa) | q (mol kg <sup>-1</sup> ) |
|-------------------------------------------|---------------------------|---------|---------------------------|--------------------------------------------|---------------------------|---------|---------------------------|-------------------------------------------|---------------------------|---------|---------------------------|
| 4.46                                      | 0.474                     | 370     | 2.278                     | 3.51                                       | 0.201                     | 373     | 2.016                     | 7.29                                      | 0.250                     | 409     | 1.825                     |
| 8.87                                      | 0.672                     | 401     | 2.328                     | 7.51                                       | 0.429                     | 404     | 2.065                     | 11.1                                      | 0.382                     | 441     | 1.867                     |
| 15.3                                      | 0.838                     | 432     | 2.373                     | 13.5                                       | 0.602                     | 436     | 2.108                     | 19.0                                      | 0.532                     | 473     | 1.908                     |
| 23.3                                      | 0.977                     | 464     | 2.418                     | 21.2                                       | 0.750                     | 467     | 2.151                     | 28.3                                      | 0.660                     | 504     | 1.947                     |
| 32.8                                      | 1.097                     | 495     | 2.460                     | 30.3                                       | 0.875                     | 499     | 2.191                     | 38.7                                      | 0.768                     | 537     | 1.983                     |
| 43.2                                      | 1.201                     | 527     | 2.499                     | 40.4                                       | 0.981                     | 531     | 2.229                     | 50.0                                      | 0.861                     | 569     | 2.020                     |
| 54.2                                      | 1.293                     | 559     | 2.537                     | 51.5                                       | 1.073                     | 563     | 2.267                     | 62.1                                      | 0.943                     | 601     | 2.053                     |
| 65.7                                      | 1.374                     | 591     | 2.574                     | 63.1                                       | 1.154                     | 596     | 2.302                     | 74.1                                      | 1.012                     | 633     | 2.086                     |
| 77.7                                      | 1.447                     | 622     | 2.607                     | 75.1                                       | 1.225                     | 628     | 2.335                     | 86.7                                      | 1.075                     | 666     | 2.118                     |
| 88.5                                      | 1.507                     | 655     | 2.640                     | 85.9                                       | 1.282                     | 661     | 2.367                     | 97.9                                      | 1.127                     | 699     | 2.148                     |
| 99.6                                      | 1.562                     | 687     | 2.671                     | 96.8                                       | 1.333                     | 693     | 2.400                     | 109                                       | 1.175                     | 732     | 2.178                     |
| 110                                       | 1.613                     | 719     | 2.700                     | 108                                        | 1.382                     | 726     | 2.429                     | 137                                       | 1.273                     | 765     | 2.205                     |
| 137                                       | 1.719                     | 752     | 2.729                     | 135                                        | 1.483                     | 758     | 2.458                     | 165                                       | 1.357                     | 798     | 2.231                     |
| 164                                       | 1.814                     | 784     | 2.758                     | 163                                        | 1.572                     | 791     | 2.485                     | 194                                       | 1.434                     | 831     | 2.258                     |
| 192                                       | 1.898                     | 817     | 2.785                     | 191                                        | 1.654                     | 824     | 2.513                     | 224                                       | 1.503                     | 864     | 2.282                     |
| 221                                       | 1.974                     | 850     | 2.811                     | 221                                        | 1.727                     | 857     | 2.537                     | 254                                       | 1.567                     | 897     | 2.306                     |
| 250                                       | 2.044                     | 883     | 2.834                     | 250                                        | 1.793                     | 890     | 2.563                     | 284                                       | 1.626                     | 930     | 2.332                     |
| 279                                       | 2.110                     | 916     | 2.859                     | 280                                        | 1.854                     | 923     | 2.588                     | 315                                       | 1.680                     |         |                           |
| 309                                       | 2.168                     |         |                           | 311                                        | 1.912                     |         |                           | 346                                       | 1.732                     |         |                           |
| DQ <sub>aver</sub> (HP, LP): 1.46, 1.88 % |                           |         |                           | DQ <sub>aver</sub> (HP, LP) : 2.73, 3.06 % |                           |         |                           | DQ <sub>aver</sub> (HP, LP): 2.02, 1.80 % |                           |         |                           |



 $\textbf{Table 15} \ \ \text{Experimental adsorption isotherm data for } N_2 \ \text{on zeolite LiX}$ 

| P<br>(kPa)<br>293 K | q<br>(mol kg <sup>-1</sup> )              | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K | q<br>(mol kg <sup>-1</sup> )          | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K | q<br>(mol kg <sup>-1</sup> )           | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |  |
|---------------------|-------------------------------------------|------------|------------------------------|---------------------|---------------------------------------|------------|------------------------------|---------------------|----------------------------------------|------------|------------------------------|--|
| 8.34                | 0.129                                     | 406        | 1.502                        | 12.9                | 0.119                                 | 441        | 1.307                        | 13.7                | 0.078                                  | 476        | 1.116                        |  |
| 18.9                | 0.256                                     | 437        | 1.546                        | 23.2                | 0.199                                 | 473        | 1.348                        | 26.7                | 0.148                                  | 508        | 1.152                        |  |
| 29.4                | 0.358                                     | 469        | 1.586                        | 35.1                | 0.279                                 | 505        | 1.388                        | 40.0                | 0.210                                  | 540        | 1.187                        |  |
| 40.7                | 0.450                                     | 500        | 1.627                        | 47.4                | 0.352                                 | 537        | 1.426                        | 53.3                | 0.267                                  | 573        | 1.220                        |  |
| 52.2                | 0.531                                     | 532        | 1.665                        | 59.9                | 0.417                                 | 569        | 1.463                        | 66.8                | 0.320                                  | 605        | 1.253                        |  |
| 63.9                | 0.604                                     | 564        | 1.703                        | 72.5                | 0.477                                 | 602        | 1.497                        | 80.4                | 0.369                                  | 638        | 1.285                        |  |
| 76.1                | 0.670                                     | 596        | 1.738                        | 85.2                | 0.532                                 | 634        | 1.531                        | 92.8                | 0.410                                  | 671        | 1.316                        |  |
| 87.5                | 0.723                                     | 628        | 1.772                        | 97.0                | 0.579                                 | 667        | 1.563                        | 105                 | 0.446                                  | 704        | 1.344                        |  |
| 99.0                | 0.775                                     | 660        | 1.804                        | 109                 | 0.622                                 | 699        | 1.594                        | 134                 | 0.528                                  | 738        | 1.374                        |  |
| 110                 | 0.822                                     | 692        | 1.836                        | 137                 | 0.716                                 | 732        | 1.624                        | 163                 | 0.603                                  | 771        | 1.401                        |  |
| 137                 | 0.923                                     | 725        | 1.866                        | 165                 | 0.797                                 | 765        | 1.653                        | 193                 | 0.672                                  | 804        | 1.426                        |  |
| 165                 | 1.010                                     | 757        | 1.895                        | 194                 | 0.874                                 | 798        | 1.681                        | 223                 | 0.734                                  | 837        | 1.454                        |  |
| 194                 | 1.092                                     | 790        | 1.923                        | 224                 | 0.940                                 | 831        | 1.708                        | 254                 | 0.795                                  | 871        | 1.478                        |  |
| 223                 | 1.163                                     | 822        | 1.952                        | 254                 | 1.005                                 | 864        | 1.734                        | 285                 | 0.849                                  | 904        | 1.504                        |  |
| 253                 | 1.231                                     | 855        | 1.974                        | 284                 | 1.063                                 | 897        | 1.758                        | 316                 | 0.899                                  |            |                              |  |
| 283                 | 1.291                                     | 888        | 1.999                        | 315                 | 1.119                                 | 930        | 1.785                        | 348                 | 0.948                                  |            |                              |  |
| 313                 | 1.351                                     | 921        | 2.025                        | 346                 | 1.169                                 |            |                              | 379                 | 0.993                                  |            |                              |  |
| 344                 | 1.403                                     |            |                              | 378                 | 1.218                                 |            |                              | 411                 | 1.037                                  |            |                              |  |
| DQ <sub>aver</sub>  | DQ <sub>aver</sub> (HP, LP): 1.51, 2.11 % |            |                              |                     | $DQ_{aver}$ (HP, LP): 1.43, 0.48 $\%$ |            |                              |                     | $DQ_{aver}$ (HP, LP) : 1.20, 0.45 $\%$ |            |                              |  |

 $\textbf{Table 16} \ \ \text{Experimental adsorption isotherm data for $CH_4$ on zeolite $LiX$}$ 

| P<br>(kPa)<br>293 K                        | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K                    | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K                        | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |  |
|--------------------------------------------|------------------------------|------------|------------------------------|----------------------------------------|------------------------------|------------|------------------------------|--------------------------------------------|------------------------------|------------|------------------------------|--|
| 9.57                                       | 0.130                        | 379        | 1.825                        | 13.1                                   | 0.126                        | 412        | 1.603                        | 13.2                                       | 0.086                        | 431        | 1.363                        |  |
| 19.0                                       | 0.259                        | 409        | 1.887                        | 22.6                                   | 0.206                        | 443        | 1.658                        | 25.8                                       | 0.162                        | 462        | 1.415                        |  |
| 29.0                                       | 0.367                        | 439        | 1.946                        | 33.9                                   | 0.293                        | 473        | 1.712                        | 38.6                                       | 0.233                        | 494        | 1.465                        |  |
| 39.5                                       | 0.466                        | 469        | 2.001                        | 45.6                                   | 0.374                        | 504        | 1.763                        | 51.3                                       | 0.298                        | 525        | 1.513                        |  |
| 50.2                                       | 0.556                        | 500        | 2.053                        | 57.2                                   | 0.448                        | 536        | 1.812                        | 63.9                                       | 0.358                        | 557        | 1.559                        |  |
| 61.3                                       | 0.641                        | 531        | 2.102                        | 69.0                                   | 0.517                        | 567        | 1.858                        | 76.6                                       | 0.416                        | 589        | 1.601                        |  |
| 72.5                                       | 0.719                        | 562        | 2.150                        | 80.4                                   | 0.581                        | 598        | 1.903                        | 87.5                                       | 0.466                        | 620        | 1.642                        |  |
| 83.6                                       | 0.790                        | 593        | 2.195                        | 90.8                                   | 0.634                        | 630        | 1.943                        | 98.5                                       | 0.511                        | 652        | 1.681                        |  |
| 93.7                                       | 0.850                        | 624        | 2.237                        | 101                                    | 0.686                        | 662        | 1.982                        | 109                                        | 0.552                        | 684        | 1.718                        |  |
| 104                                        | 0.906                        | 656        | 2.277                        | 127                                    | 0.802                        | 694        | 2.020                        | 136                                        | 0.653                        | 717        | 1.756                        |  |
| 129                                        | 1.033                        | 687        | 2.315                        | 153                                    | 0.909                        | 726        | 2.055                        | 164                                        | 0.744                        | 750        | 1.790                        |  |
| 154                                        | 1.151                        | 719        | 2.352                        | 180                                    | 1.007                        | 758        | 2.091                        | 192                                        | 0.831                        | 782        | 1.822                        |  |
| 180                                        | 1.257                        | 751        | 2.387                        | 208                                    | 1.098                        | 790        | 2.124                        | 221                                        | 0.912                        | 815        | 1.855                        |  |
| 208                                        | 1.356                        | 783        | 2.420                        | 236                                    | 1.185                        | 823        | 2.156                        | 250                                        | 0.987                        | 847        | 1.885                        |  |
| 235                                        | 1.447                        | 815        | 2.451                        | 264                                    | 1.266                        | 855        | 2.185                        | 279                                        | 1.058                        | 880        | 1.914                        |  |
| 263                                        | 1.534                        | 848        | 2.482                        | 293                                    | 1.341                        | 888        | 2.213                        | 309                                        | 1.126                        | 913        | 1.941                        |  |
| 292                                        | 1.614                        | 880        | 2.510                        | 322                                    | 1.412                        | 920        | 2.241                        | 339                                        | 1.191                        |            |                              |  |
| 320                                        | 1.689                        | 913        | 2.537                        | 352                                    | 1.480                        |            |                              | 370                                        | 1.252                        |            |                              |  |
| DQ <sub>aver</sub> (HP, LP) : 0.90, 0.90 % |                              |            |                              | $DQ_{aver}$ (HP, LP) : 0.69, 0.55 $\%$ |                              |            |                              | DQ <sub>aver</sub> (HP, LP) : 0.58, 0.49 % |                              |            |                              |  |



Adsorption (2014) 20:631-647

Table 17 Experimental adsorption isotherm data for Ar on zeolite LiX

| P<br>(kPa)<br>293 K                    | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K                    | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K                                      | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |  |
|----------------------------------------|------------------------------|------------|------------------------------|----------------------------------------|------------------------------|------------|------------------------------|----------------------------------------------------------|------------------------------|------------|------------------------------|--|
| 13.2                                   | 0.017                        | 454        | 0.527                        | 13.7                                   | 0.014                        | 466        | 0.441                        | 13.3                                                     | 0.011                        | 476        | 0.370                        |  |
| 25.4                                   | 0.032                        | 484        | 0.559                        | 26.4                                   | 0.027                        | 497        | 0.467                        | 25.6                                                     | 0.021                        | 507        | 0.394                        |  |
| 37.7                                   | 0.047                        | 513        | 0.590                        | 38.7                                   | 0.039                        | 527        | 0.495                        | 37.8                                                     | 0.032                        | 539        | 0.416                        |  |
| 49.5                                   | 0.061                        | 543        | 0.620                        | 50.9                                   | 0.051                        | 558        | 0.521                        | 49.9                                                     | 0.041                        | 571        | 0.439                        |  |
| 60.9                                   | 0.075                        | 573        | 0.651                        | 62.8                                   | 0.063                        | 589        | 0.547                        | 61.8                                                     | 0.051                        | 603        | 0.462                        |  |
| 72.4                                   | 0.089                        | 603        | 0.680                        | 74.6                                   | 0.075                        | 620        | 0.573                        | 73.2                                                     | 0.061                        | 634        | 0.484                        |  |
| 83.3                                   | 0.103                        | 633        | 0.711                        | 85.9                                   | 0.086                        | 651        | 0.599                        | 84.8                                                     | 0.070                        | 666        | 0.506                        |  |
| 93.4                                   | 0.115                        | 663        | 0.740                        | 96.2                                   | 0.097                        | 682        | 0.625                        | 95.3                                                     | 0.078                        | 698        | 0.527                        |  |
| 102                                    | 0.126                        | 693        | 0.769                        | 101                                    | 0.102                        | 713        | 0.650                        | 100                                                      | 0.081                        | 729        | 0.549                        |  |
| 131                                    | 0.161                        | 723        | 0.798                        | 131                                    | 0.132                        | 744        | 0.675                        | 131                                                      | 0.107                        | 761        | 0.570                        |  |
| 160                                    | 0.196                        | 754        | 0.826                        | 162                                    | 0.161                        | 775        | 0.699                        | 162                                                      | 0.132                        | 793        | 0.591                        |  |
| 189                                    | 0.231                        | 784        | 0.855                        | 192                                    | 0.190                        | 806        | 0.724                        | 193                                                      | 0.156                        | 825        | 0.612                        |  |
| 218                                    | 0.265                        | 814        | 0.882                        | 222                                    | 0.219                        | 837        | 0.748                        | 225                                                      | 0.180                        | 856        | 0.632                        |  |
| 248                                    | 0.299                        | 845        | 0.910                        | 252                                    | 0.248                        | 868        | 0.772                        | 256                                                      | 0.205                        | 888        | 0.652                        |  |
| 277                                    | 0.333                        | 875        | 0.938                        | 283                                    | 0.276                        | 899        | 0.795                        | 287                                                      | 0.229                        | 920        | 0.672                        |  |
| 306                                    | 0.366                        | 905        | 0.964                        | 313                                    | 0.304                        | 930        | 0.819                        | 319                                                      | 0.253                        | 952        | 0.692                        |  |
| 336                                    | 0.399                        | 936        | 0.990                        | 344                                    | 0.332                        | 962        | 0.842                        | 350                                                      | 0.277                        | 984        | 0.713                        |  |
| 365                                    | 0.432                        | 966        | 1.016                        | 374                                    | 0.360                        | 993        | 0.866                        | 381                                                      | 0.301                        | 1,015      | 0.732                        |  |
| 395                                    | 0.463                        | 997        | 1.042                        | 404                                    | 0.388                        |            |                              | 413                                                      | 0.324                        |            |                              |  |
| $DQ_{aver}$ (HP, LP) : 0.32, 0.19 $\%$ |                              |            |                              | $DQ_{aver}$ (HP, LP) : 0.25, 0.70 $\%$ |                              |            |                              | $\mathrm{DQ}_{\mathrm{aver}}$ (HP, LP) : 0.46, 2.36 $\%$ |                              |            |                              |  |

Table 18 Experimental adsorption isotherm data for H2 on zeolite LiX

| P<br>(kPa)<br>293 K | q<br>(mol kg <sup>-1</sup> )     | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>308 K | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) | P<br>(kPa)<br>323 K | q<br>(mol kg <sup>-1</sup> )     | P<br>(kPa) | q<br>(mol kg <sup>-1</sup> ) |  |
|---------------------|----------------------------------|------------|------------------------------|---------------------|------------------------------|------------|------------------------------|---------------------|----------------------------------|------------|------------------------------|--|
| 107                 | 0.060                            | 548        | 0.167                        | 109                 | 0.056                        | 554        | 0.155                        | 109                 | 0.055                            | 559        | 0.145                        |  |
| 141                 | 0.070                            | 582        | 0.176                        | 143                 | 0.064                        | 589        | 0.162                        | 143                 | 0.061                            | 594        | 0.150                        |  |
| 175                 | 0.079                            | 616        | 0.185                        | 177                 | 0.070                        | 623        | 0.171                        | 178                 | 0.067                            | 628        | 0.158                        |  |
| 209                 | 0.086                            | 650        | 0.193                        | 212                 | 0.079                        | 657        | 0.177                        | 213                 | 0.075                            | 663        | 0.165                        |  |
| 242                 | 0.097                            | 684        | 0.201                        | 246                 | 0.087                        | 691        | 0.185                        | 247                 | 0.082                            | 698        | 0.171                        |  |
| 276                 | 0.104                            | 718        | 0.209                        | 280                 | 0.094                        | 725        | 0.193                        | 282                 | 0.088                            | 732        | 0.177                        |  |
| 310                 | 0.111                            | 752        | 0.219                        | 314                 | 0.102                        | 759        | 0.202                        | 316                 | 0.094                            | 767        | 0.185                        |  |
| 344                 | 0.119                            | 786        | 0.227                        | 348                 | 0.110                        | 794        | 0.209                        | 351                 | 0.102                            | 801        | 0.193                        |  |
| 378                 | 0.129                            | 820        | 0.236                        | 383                 | 0.116                        | 828        | 0.216                        | 386                 | 0.108                            | 836        | 0.200                        |  |
| 412                 | 0.138                            | 854        | 0.244                        | 417                 | 0.125                        | 862        | 0.223                        | 420                 | 0.113                            | 870        | 0.207                        |  |
| 446                 | 0.144                            | 888        | 0.250                        | 451                 | 0.133                        | 896        | 0.228                        | 455                 | 0.122                            | 905        | 0.215                        |  |
| 480                 | 0.153                            | 922        | 0.259                        | 485                 | 0.142                        | 931        | 0.238                        | 490                 | 0.130                            |            |                              |  |
| 514                 | 0.162                            |            |                              | 520                 | 0.148                        |            |                              | 524                 | 0.137                            |            |                              |  |
| DQ <sub>aver</sub>  | DQ <sub>aver</sub> (HP) : 2.95 % |            |                              |                     | $DQ_{aver}$ (HP) : 2.56 %    |            |                              |                     | DQ <sub>aver</sub> (HP) : 3.67 % |            |                              |  |

other hand, in the case of  $CH_4$  and Ar, activated carbon showed a higher isosteric heat of adsorption at a certain level compared to that of zeolite LiX.

The adsorption of all the molecules implied a vertical interaction stemming from the energetic heterogeneity of the surface. On the other hand, CO<sub>2</sub> on zeolite LiX showed



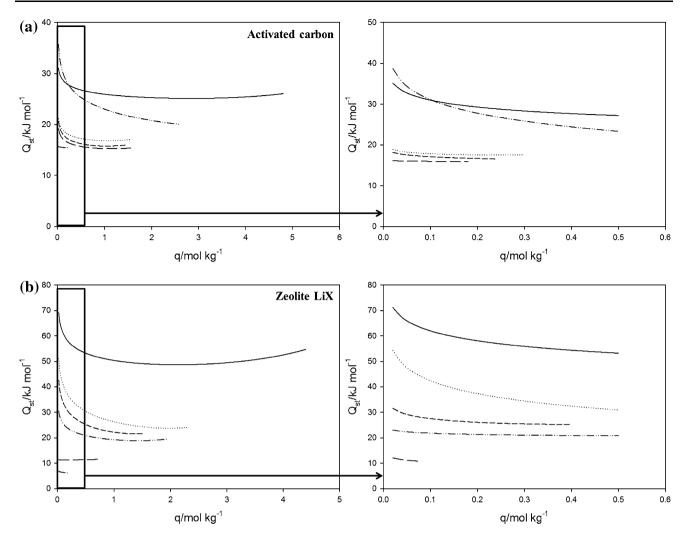



Fig. 3 Isosteric heat of adsorption on adsorbents with respect to surface loading **a** activated carbon and **b** Zeolite LiX (*straight line*, CO<sub>2</sub>; *horizontal ellipses*, CO; *spaced hyphen lines*, N<sub>2</sub>; *spaced n-dash* 

lines with double dots,  $CH_4$ ; spaced n-dash lines, Ar; spaced n-dash lines with single dot,  $H_2$ )

lateral interactions between adsorbate molecules, resulting in an increase in adsorbed amount after about 3 mol/kg.

Except for Ar and H<sub>2</sub> on zeolite LiX, the adsorption of all the molecules implied a vertical interaction stemming from the energetic heterogeneity of the surface. On the other hand, CO<sub>2</sub> on activated carbon and CO<sub>2</sub> and CO on zeolite LiX showed lateral interactions between adsorbate molecules, resulting in an increase in adsorbed amount.

## 4 Conclusion

The adsorption isotherms of CO<sub>2</sub>, CO, N<sub>2</sub>, CH<sub>4</sub>, Ar, and H<sub>2</sub> on activated carbon and zeolite LiX were measured at 293, 308, and 323 K and pressures up to 1.0 MPa. The order of adsorption amount was  $CO_2 \gg CH_4 > CO > N_2 \ge Ar \gg H_2$  for activated carbon and

 ${\rm CO_2}\gg{\rm CO}>{\rm CH_4}\geq{\rm N_2}>{\rm Ar}\gg{\rm H_2}$  for zeolite LiX. The saturated amount of  ${\rm CO_2}$  on activated carbon was higher than that on zeolite LiX. However, the adsorbed amounts on zeolite LiX in the low pressure range ( $\sim 0.1$  MPa) were larger than those on activated carbon due to the high adsorption affinity of zeolite LiX. From deviation analysis, it is recommended that the isotherm in the proper pressure range should be utilized to appropriately design adsorption processes.

Experimental data were correlated by the Langmuir, Sips, and Toth models. The Sips and Toth models showed small deviations from experimental data compared to the result from the Langmuir model. The order of heat of adsorption was  $CO_2 \gg CH_4 > CO \geq N_2 \geq Ar \gg H_2$  for activated carbon and  $CO_2 \gg CO > N_2 > CH_4 > Ar \gg H_2$  for zeolite LiX. The isosteric heat of  $CO_2$  on zeolite LiX was much higher than that on activated carbon.



Further, zeolite LiX also showed higher isosteric heats of CO and N<sub>2</sub> than activated carbon.

These results can be used to accurately design adsorption processes by applying the isotherm data within the operating condition range.

**Acknowledgments** This work was supported by POSCO (2013 × 037), the Korea Institute of Energy Technology Evaluation and Planning (KETEP: 20118510020030-12-1-000) and the Ministry of Trade, Industry & Energy (MOTIE).

# References

- Ahn, H., Moon, J.-H., Hyun, S.-H., Lee, C.-H.: Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets. Adsorption **10**(2), 111–128 (2004)
- Ahn, H., Yoo, H.-K., Shul, Y., Hyun, S., Lee, C.-H.: Diffusion mechanism of N<sub>2</sub> and CH<sub>4</sub> in pelletized zeolite 4A, 5A and CaX. J. Chem. Eng. Jpn. 35(4), 334–345 (2002)
- Ahn, S., You, Y.-W., Lee, D.-G., Kim, K.-H., Oh, M., Lee, C.-H.: Layered two- and four-bed PSA processes for H<sub>2</sub> recovery from coal gas. Chem. Eng. Sci. 68(1), 413–423 (2012). doi:10.1016/j. ces.2011.09.053
- Bae, Y.-S., Lee, C.-H.: Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure. Carbon 43(1), 95–107 (2005)
- Baksh, M., Kikkinides, E., Yang, R.: Lithium type X zeolite as a superior sorbent for air separation. Sep. Sci. Technol. 27(3), 277–294 (1992)
- Choi, B.-U., Choi, D.-K., Lee, Y.-W., Lee, B.-K., Kim, S.-H.: Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon. J. Chem. Eng. Data 48(3), 603–607 (2003)
- Chue, K., Kim, J., Yoo, Y., Cho, S., Yang, R.: Comparison of activated carbon and zeolite 13X for CO<sub>2</sub> recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34(2), 591–598 (1995)
- Do Duong, D.: Absorption Analysis: Equilibria and Kinetics, vol. 2. Imperial College, London (1998)
- Gomes, V.G., Yee, K.W.: Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep. Purif. Technol. 28(2), 161–171 (2002)
- Hill, T.L.: Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption. J. Chem. Phys. 17, 520 (1949)
- Himeno, S., Komatsu, T., Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data **50**(2), 369–376 (2005)
- Kuro-Oka, M., Suzuki, T., Nitta, T., Katayama, T.: Adsorption isotherms of hydrocarbons and carbon dioxide on activated fiber carbon. J. Chem. Eng. Jpn. 17(6), 588–592 (1984)

- Lee, J.-S., Kim, J.-H., Kim, J.-T., Suh, J.-K., Lee, J.-M., Lee, C.-H.: Adsorption equilibria of CO<sub>2</sub> on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47(5), 1237–1242 (2002)
- Lee, J.J., Kim, M.K., Lee, D.G., Ahn, H., Kim, M.J., Lee, C.H.: Heat-exchange pressure swing adsorption process for hydrogen separation. AlChE J. **54**(8), 2054–2064 (2008)
- Linstrom, P.J., Mallard, W.G.: NIST Chemistry WebBook; NIST Standard Reference Database No. 69. NIST, New York (2001)
- Liu, Z., Grande, C.A., Li, P., Yu, J., Rodrigues, A.E.: Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol. 81(3), 307–317 (2011). doi:10.1016/j.seppur.2011.07.037
- Myers, A.L., Belfort, G.: Fundamentals of adsorption. In. Engineering Foundation, New York (1984)
- Nam, G.-M., Jeong, B.-M., Kang, S.-H., Lee, B.-K., Choi, D.-K.: Equilibrium isotherms of CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>4</sub>, N<sub>2</sub>, and H<sub>2</sub> on zeolite 5A using a static volumetric method. J. Chem. Eng. Data **50**(1), 72–76 (2005)
- Park, J.-Y., Yang, S.-I., Choi, D.-Y., Jang, S.-C., Lee, C.-H., Choi, D.-K.: Pure and binary gases adsorption equilibria of CO<sub>2</sub>/CO/CH<sub>4</sub>/H<sub>2</sub> on Li–X zeolite. Korean. Chem. Eng. Res. 46(1), 175–183 (2008)
- Park, Y.-J., Lee, S.-J., Moon, J.-H., Choi, D.-K., Lee, C.-H.: Adsorption equilibria of O<sub>2</sub>, N<sub>2</sub>, and Ar on carbon molecular sieve and zeolites 10X, 13X, and LiX. J. Chem. Eng. Data 51(3), 1001–1008 (2006)
- Pillai, R.S., Sethia, G., Jasra, R.V.: Sorption of CO, CH<sub>4</sub>, and  $N_2$  in alkali metal ion exchanged zeolite-X: grand canonical monte carlo simulation and volumetric measurements. Ind. Eng. Chem. Res. **49**(12), 5816–5825 (2010)
- Schell, J., Casas, N., Marx, D., Blom, R., Mazzotti, M.: Comparison of commercial and new adsorbent materials for pre-combustion CO<sub>2</sub> capture by pressure swing adsorption. Energy Procedia 37, 167–174 (2013). doi:10.1016/j.egypro.2013.05.098
- Sircar, S.: Gibbsian surface excess for gas adsorption revisited. Ind. Eng. Chem. Res. **38**(10), 3670–3682 (1999)
- Suzuk, M.: Adsorption engineering, vol. 551, pp. 128–132. Kodansha, Tokyo (1990)
- Talu, O., Kabel, R.: Isosteric heat of adsorption and the vacancy solution model. AlChE J. 33(3), 510–514 (1987)
- Walton, K.S., Abney, M.B., Douglas LeVan, M.: CO<sub>2</sub> adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91(1), 78–84 (2006)
- Yang, J., Lee, C.H.: Adsorption dynamics of a layered bed PSA for H<sub>2</sub> recovery from coke oven gas. AlChE J. 44(6), 1325–1334 (1998)
- You, Y.-W., Lee, D.-G., Yoon, K.-Y., Moon, D.-K., Kim, S.M., Lee, C.-H.: H<sub>2</sub> PSA purifier for CO removal from hydrogen mixtures. Int. J. Hydrog Energy **37**(23), 18175–18186 (2012). doi:10.1016/j.ijhydene.2012.09.044

